Skip to main content

Advertisement

Log in

In vitro activity of the mTOR inhibitor everolimus, in a large panel of breast cancer cell lines and analysis for predictors of response

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Everolimus (RAD001, Afinitor®) is an oral, selective mTOR inhibitor recently approved by the US-FDA in combination with exemestane for treatment of hormone receptor positive advanced breast cancer. To date, no molecular predictors of response to everolimus in breast cancer have been identified. We hypothesized predictive markers could be identified using preclinical models. Using a molecularly characterized panel of human breast cancer and immortalized breast epithelial cell lines, we determined sensitivity to everolimus alone or in combination with ER− or HER2− targeted therapy. Gene expression microarrays and comparative genomic hybridization were performed on the cell lines to identify predictors of response to everolimus. Among 13 everolimus-sensitive cell lines, 10/13(77 %) were luminal, while in 26 resistant cell lines, 16/26(62 %) were non-luminal, and 10/26(38 %) were luminal. Only 3/24 non-luminal lines were sensitive, two of which were HER2+. Everolimus enhanced the anti-proliferative effect of both tamoxifen (TAM) and fulvestrant (FUL) in ER+ breast cancer cell lines, as well as trastuzumab in HER2+ cell lines. Everolimus + FUL but not everolimus + TAM reversed acquired resistance to TAM. Everolimus inhibited mTOR in tested cell lines by decreasing S6 phosphorylation, mediating its anti-proliferative effect by G0/G1 cell cycle arrest and induction of apoptosis. Chromosomal amplifications of AURKA (p value = 0.04) and HER2 (p value = 0.03) were each associated with increased sensitivity to everolimus. Transcript expression microarrays identified GSK3A, PIK3R3, KLF8, and MAPK10 among the genes overexpressed in sensitive luminal lines, while PGP, RPL38, GPT, and GFAP were among the genes overexpressed in resistant luminal cell lines. These preclinical in vitro data provide further support for continued clinical development of everolimus in luminal (ER+ or HER2+) breast cancer in combination with targeted therapies. We identified several potential molecular markers associated with response to everolimus that will require validation in clinical material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

EMT:

Epithelial-to-mesenchymal transition

ER:

Estrogen receptor

FITC:

Fluorescein isothiocyanate

FUL:

Fulvestrant

IC50 :

Drug concentration that provides 50 % growth inhibition

mTOR:

Mammalian target of rapamycin

HER2:

Human epidermal growth factor receptor 2

Nim-DAPI:

Nuclear isolation medium–4,6-diamidino-2-phenylindole dihydrochloride

OS:

Overall survival

PI3K:

Phosphoinositide 3-kinase

PFS:

Progression-free survival

PTEN:

Phosphatase and tensin homolog

RR:

Relative risk

TAM:

Tamoxifen

TNBC:

Triple-negative breast cancer

TTP:

Time to progression

References

  1. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lonning PE, Borresen-Dale AL, Brown PO, Botstein D (2000) Molecular portraits of human breast tumours. Nature 406(6797):747–752

    Article  CAS  PubMed  Google Scholar 

  2. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS, Thorsen T, Quist H, Matese JC, Brown PO, Botstein D, Lonning PE, Borresen-Dale AL (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98(19):10869–10874. doi:10.1073/pnas.191367098

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Vivanco I, Sawyers CL (2002) The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer 2(7):489–501. doi:10.1038/nrc839

    Article  CAS  PubMed  Google Scholar 

  4. Laplante M, Sabatini DM (2009) mTOR signaling at a glance. J Cell Sci 122(20):3589–3594. doi:10.1242/jcs.051011

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Sabatini DM (2006) mTOR and cancer: insights into a complex relationship. Nat Rev Cancer 6(9):729–734. doi:10.1038/nrc1974

    Article  CAS  PubMed  Google Scholar 

  6. Bjornsti MA, Houghton PJ (2004) The TOR pathway: a target for cancer therapy. Nat Rev Cancer 4(5):335–348. doi:10.1038/nrc1362

    Article  CAS  PubMed  Google Scholar 

  7. Shaw RJ, Cantley LC (2006) Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature 441(7092):424–430. doi:10.1038/nature04869

    Article  CAS  PubMed  Google Scholar 

  8. Sarbassov DD, Ali SM, Kim DH, Guertin DA, Latek RR, Erdjument-Bromage H, Tempst P, Sabatini DM (2004) Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol 14(14):1296–1302. doi:10.1016/j.cub.2004.06.054

    Article  CAS  PubMed  Google Scholar 

  9. Jacinto E, Loewith R, Schmidt A, Lin S, Ruegg MA, Hall A, Hall MN (2004) Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol 6(11):1122–1128. doi:10.1038/ncb1183

    Article  CAS  PubMed  Google Scholar 

  10. Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and metabolism. Cell 124(3):471–484. doi:10.1016/j.cell.2006.01.016

    Article  CAS  PubMed  Google Scholar 

  11. Zhou X, Tan M, Hawthorne VS, Klos KS, Lan KH, Yang Y, Yang W, Smith TL, Shi D, Yu D (2004) Activation of the Akt/mammalian target of rapamycin/4E-BP1 pathway by ErbB2 overexpression predicts tumor progression in breast cancers. Clin Cancer Res 10(20):6779–6788. doi:10.1158/1078-0432.CCR-04-0112

    Article  CAS  PubMed  Google Scholar 

  12. Stambolic V, Tsao MS, Macpherson D, Suzuki A, Chapman WB, Mak TW (2000) High incidence of breast and endometrial neoplasia resembling human Cowden syndrome in pten ± mice. Cancer Res 60(13):3605–3611

    CAS  PubMed  Google Scholar 

  13. Perez-Tenorio G, Alkhori L, Olsson B, Waltersson MA, Nordenskjold B, Rutqvist LE, Skoog L, Stal O (2007) PIK3CA mutations and PTEN loss correlate with similar prognostic factors and are not mutually exclusive in breast cancer. Clin Cancer Res 13(12):3577–3584. doi:10.1158/1078-0432.CCR-06-1609

    Article  CAS  PubMed  Google Scholar 

  14. Li G, Robinson GW, Lesche R, Martinez-Diaz H, Jiang Z, Rozengurt N, Wagner KU, Wu DC, Lane TF, Liu X, Hennighausen L, Wu H (2002) Conditional loss of PTEN leads to precocious development and neoplasia in the mammary gland. Development 129(17):4159–4170

    CAS  PubMed  Google Scholar 

  15. Schade B, Rao T, Dourdin N, Lesurf R, Hallett M, Cardiff RD, Muller WJ (2009) PTEN deficiency in a luminal ErbB-2 mouse model results in dramatic acceleration of mammary tumorigenesis and metastasis. J Biol Chem 284(28):19018–19026. doi:10.1074/jbc.M109.018937

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Yuan TL, Cantley LC (2008) PI3K pathway alterations in cancer: variations on a theme. Oncogene 27(41):5497–5510. doi:10.1038/onc.2008.245

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Engelman JA (2009) Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat Rev Cancer 9(8):550–562. doi:10.1038/nrc2664

    Article  CAS  PubMed  Google Scholar 

  18. Sun M, Paciga JE, Feldman RI, Yuan Z, Coppola D, Lu YY, Shelley SA, Nicosia SV, Cheng JQ (2001) Phosphatidylinositol-3-OH Kinase (PI3K)/AKT2, activated in breast cancer, regulates and is induced by estrogen receptor alpha (ERalpha) via interaction between ERalpha and PI3K. Cancer Res 61(16):5985–5991

    CAS  PubMed  Google Scholar 

  19. Bellacosa A, de Feo D, Godwin AK, Bell DW, Cheng JQ, Altomare DA, Wan M, Dubeau L, Scambia G, Masciullo V, Ferrandina G, Benedetti Panici P, Mancuso S, Neri G, Testa JR (1995) Molecular alterations of the AKT2 oncogene in ovarian and breast carcinomas. Int J Cancer 64(4):280–285

    Article  CAS  PubMed  Google Scholar 

  20. Boulay A, Lane HA (2007) The mammalian target of rapamycin kinase and tumor growth inhibition. Recent Results Cancer Res 172:99–124

    Article  CAS  PubMed  Google Scholar 

  21. O’Donnell A, Faivre S, Burris HA 3rd, Rea D, Papadimitrakopoulou V, Shand N, Lane HA, Hazell K, Zoellner U, Kovarik JM, Brock C, Jones S, Raymond E, Judson I (2008) Phase I pharmacokinetic and pharmacodynamic study of the oral mammalian target of rapamycin inhibitor everolimus in patients with advanced solid tumors. J Clin Oncol 26(10):1588–1595. doi:10.1200/JCO.2007.14.0988

    Article  PubMed  Google Scholar 

  22. Tabernero J, Rojo F, Calvo E, Burris H, Judson I, Hazell K, Martinelli E, Cajal SR, Jones S, Vidal L, Shand N, Macarulla T, Ramos FJ, Dimitrijevic S, Zoellner U, Tang P, Stumm M, Lane HA, Lebwohl D, Baselga J (2008) Dose- and schedule-dependent inhibition of the mammalian target of rapamycin pathway with everolimus: a phase I tumor pharmacodynamic study in patients with advanced solid tumors. J Clin Oncol 26(10):1603–1610. doi:10.1200/JCO.2007.14.5482

    Article  CAS  PubMed  Google Scholar 

  23. Boulay A, Zumstein-Mecker S, Stephan C, Beuvink I, Zilbermann F, Haller R, Tobler S, Heusser C, O’Reilly T, Stolz B, Marti A, Thomas G, Lane HA (2004) Antitumor efficacy of intermittent treatment schedules with the rapamycin derivative RAD001 correlates with prolonged inactivation of ribosomal protein S6 kinase 1 in peripheral blood mononuclear cells. Cancer Res 64(1):252–261

    Article  CAS  PubMed  Google Scholar 

  24. Brown EJ, Albers MW, Shin TB, Ichikawa K, Keith CT, Lane WS, Schreiber SL (1994) A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature 369(6483):756–758. doi:10.1038/369756a0

    Article  CAS  PubMed  Google Scholar 

  25. Sabatini DM, Erdjument-Bromage H, Lui M, Tempst P, Snyder SH (1994) RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell 78(1):35–43

    Article  CAS  PubMed  Google Scholar 

  26. Baselga J, Campone M, Piccart M, Burris HA 3rd, Rugo HS, Sahmoud T, Noguchi S, Gnant M, Pritchard KI, Lebrun F, Beck JT, Ito Y, Yardley D, Deleu I, Perez A, Bachelot T, Vittori L, Xu Z, Mukhopadhyay P, Lebwohl D, Hortobagyi GN (2012) Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N Engl J Med 366(6):520–529. doi:10.1056/NEJMoa1109653

    Article  CAS  PubMed  Google Scholar 

  27. Andre F, Campone M, O’Regan R, Manlius C, Massacesi C, Sahmoud T, Mukhopadhyay P, Soria JC, Naughton M, Hurvitz SA (2010) Phase I study of everolimus plus weekly paclitaxel and trastuzumab in patients with metastatic breast cancer pretreated with trastuzumab. J Clin Oncol 28(34):5110–5115. doi:10.1200/JCO.2009.27.8549

    Article  CAS  PubMed  Google Scholar 

  28. Jerusalem G, Fasolo A, Dieras V, Cardoso F, Bergh J, Vittori L, Zhang Y, Massacesi C, Sahmoud T, Gianni L (2011) Phase I trial of oral mTOR inhibitor everolimus in combination with trastuzumab and vinorelbine in pre-treated patients with HER2-overexpressing metastatic breast cancer. Breast Cancer Res Treat 125(2):447–455. doi:10.1007/s10549-010-1260-x

    Article  CAS  PubMed  Google Scholar 

  29. Morrow PK, Wulf GM, Ensor J, Booser DJ, Moore JA, Flores PR, Xiong Y, Zhang S, Krop IE, Winer EP, Kindelberger DW, Coviello J, Sahin AA, Nunez R, Hortobagyi GN, Yu D, Esteva FJ (2011) Phase I/II study of trastuzumab in combination with everolimus (RAD001) in patients with HER2-overexpressing metastatic breast cancer who progressed on trastuzumab-based therapy. J Clin Oncol. doi:10.32.232110.1200/JCO.2010.32.2321

    Google Scholar 

  30. O’Regan R, Ozguroglu M, Andre F, Toi M, Heinrich G, Jerusalem M, Wilks S, Isaacs C, Xu B, Masuda N, Arena FP, Yardley DA, Yap YS, Mukhopadhyay P, Douma S, El-Hashimy M, Taran T, Sahmoud T, Lebwohl DE, Gianni L (2013) Phase III, randomized, double-blind, placebo-controlled multicenter trial of daily everolimus plus weekly trastuzumab and vinorelbine in trastuzumab-resistant, advanced breast cancer (BOLERO-3). J Clin Oncol 31(15 suppl):505

    Google Scholar 

  31. Andre F, O’Regan R, Ozguroglu M, Toi M, Xu B, Jerusalem G, Masuda N, Wilks S, Arena F, Isaacs C, Yap YS, Papai Z, Lang I, Armstrong A, Lerzo G, White M, Shen K, Litton J, Chen D, Zhang Y, Ali S, Taran T, Gianni L (2014) Everolimus for women with trastuzumab-resistant, HER2-positive, advanced breast cancer (BOLERO-3): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet Oncol 15(6):580–591. doi:10.1016/S1470-2045(14)70138-X

    Article  CAS  PubMed  Google Scholar 

  32. Mabuchi S, Altomare DA, Cheung M, Zhang L, Poulikakos PI, Hensley HH, Schilder RJ, Ozols RF, Testa JR (2007) RAD001 inhibits human ovarian cancer cell proliferation, enhances cisplatin-induced apoptosis, and prolongs survival in an ovarian cancer model. Clin Cancer Res 13(14):4261–4270. doi:10.1158/1078-0432.CCR-06-2770

    Article  CAS  PubMed  Google Scholar 

  33. Weigelt B, Warne PH, Downward J (2011) PIK3CA mutation, but not PTEN loss of function, determines the sensitivity of breast cancer cells to mTOR inhibitory drugs. Oncogene 30(29):3222–3233. doi:10.1038/onc.2011.42onc201142

    Article  CAS  PubMed  Google Scholar 

  34. Lu CH, Wyszomierski SL, Tseng LM, Sun MH, Lan KH, Neal CL, Mills GB, Hortobagyi GN, Esteva FJ, Yu D (2007) Preclinical testing of clinically applicable strategies for overcoming trastuzumab resistance caused by PTEN deficiency. Clin Cancer Res 13(19):5883–5888

    Article  CAS  PubMed  Google Scholar 

  35. Rugo HS, Hortobagyi GN, Piccart-Gebhart MJ, Burris HA, Campone M, Noguchi S, Perez AT, Deleu I, Shtivelband M, Provencher L, Masuda N, Dakhil SR, Anderson I, Chen D, Damask A, Huang A, McDonald R, Taran T, Sahmoud T, Baselga J (2013) Correlation of molecular alterations with efficacy of everolimus in hormone-receptor–positive, HER2-negative advanced breast cancer: Results from BOLERO-2. J Clin Oncol 31(suppl 15):509

    Google Scholar 

  36. Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T, Clark L, Bayani N, Coppe JP, Tong F, Speed T, Spellman PT, DeVries S, Lapuk A, Wang NJ, Kuo WL, Stilwell JL, Pinkel D, Albertson DG, Waldman FM, McCormick F, Dickson RB, Johnson MD, Lippman M, Ethier S, Gazdar A, Gray JW (2006) A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10(6):515–527. doi:10.1016/j.ccr.2006.10.008

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Finn RS, Dering J, Ginther C, Wilson CA, Glaspy P, Tchekmedyian N, Slamon DJ (2007) Dasatinib, an orally active small molecule inhibitor of both the src and abl kinases, selectively inhibits growth of basal-type/”triple-negative” breast cancer cell lines growing in vitro. Breast Cancer Res Treat 105(3):319–326. doi:10.1007/s10549-006-9463-x

    Article  CAS  PubMed  Google Scholar 

  38. Finn RS, Dering J, Conklin D, Kalous O, Cohen DJ, Desai AJ, Ginther C, Atefi M, Chen I, Fowst C, Los G, Slamon DJ (2009) PD 0332991, a selective cyclin D kinase 4/6 inhibitor, preferentially inhibits proliferation of luminal estrogen receptor-positive human breast cancer cell lines in vitro. Breast Cancer Res 11(5):R77. doi:10.1186/bcr2419

    Article  PubMed Central  PubMed  Google Scholar 

  39. Kalous O, Conklin D, Desai AJ, O’Brien NA, Ginther C, Anderson L, Cohen DJ, Britten CD, Taylor I, Christensen JG, Slamon DJ, Finn RS (2012) Dacomitinib (PF-00299804), an irreversible Pan-HER inhibitor, inhibits proliferation of HER2-amplified breast cancer cell lines resistant to trastuzumab and lapatinib. Mol Cancer Ther 11(9):1978–1987. doi:10.1158/1535-7163.MCT-11-0730

    Article  CAS  PubMed  Google Scholar 

  40. Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, Wilson CJ, Lehar J, Kryukov GV, Sonkin D, Reddy A, Liu M, Murray L, Berger MF, Monahan JE, Morais P, Meltzer J, Korejwa A, Jane-Valbuena J, Mapa FA, Thibault J, Bric-Furlong E, Raman P, Shipway A, Engels IH, Cheng J, Yu GK, Yu J, Aspesi P Jr, de Silva M, Jagtap K, Jones MD, Wang L, Hatton C, Palescandolo E, Gupta S, Mahan S, Sougnez C, Onofrio RC, Liefeld T, MacConaill L, Winckler W, Reich M, Li N, Mesirov JP, Gabriel SB, Getz G, Ardlie K, Chan V, Myer VE, Weber BL, Porter J, Warmuth M, Finan P, Harris JL, Meyerson M, Golub TR, Morrissey MP, Sellers WR, Schlegel R, Garraway LA (2012) The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483(7391):603–607. doi:10.1038/nature11003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Kalous O, Conklin D, Desai AJ, Dering J, Goldstein J, Ginther C, Anderson L, Lu M, Kolarova T, Eckardt MA, Langerod A, Borresen-Dale AL, Slamon DJ, Finn RS (2013) AMG 900, pan-Aurora kinase inhibitor, preferentially inhibits the proliferation of breast cancer cell lines with dysfunctional p53. Breast Cancer Res Treat 141(3):397–408. doi:10.1007/s10549-013-2702-z

    Article  CAS  PubMed  Google Scholar 

  42. Beeram M, Tan QT, Tekmal RR, Russell D, Middleton A, DeGraffenried LA (2007) Akt-induced endocrine therapy resistance is reversed by inhibition of mTOR signaling. Ann Oncol 18(8):1323–1328. doi:10.1093/annonc/mdm170

    Article  CAS  PubMed  Google Scholar 

  43. Treeck O, Wackwitz B, Haus U, Ortmann O (2006) Effects of a combined treatment with mTOR inhibitor RAD001 and tamoxifen in vitro on growth and apoptosis of human cancer cells. Gynecol Oncol 102(2):292–299. doi:10.1016/j.ygyno.2005.12.019

    Article  CAS  PubMed  Google Scholar 

  44. Bachelot T, Bourgier C, Cropet C, Ray-Coquard I, Ferrero JM, Freyer G, Abadie-Lacourtoisie S, Eymard JC, Debled M, Spaeth D, Legouffe E, Allouache D, El Kouri C, Pujade-Lauraine E (2012) Randomized phase II trial of everolimus in combination with tamoxifen in patients with hormone receptor-positive, human epidermal growth factor receptor 2-negative metastatic breast cancer with prior exposure to aromatase inhibitors: a GINECO study. J Clin Oncol 30(22):2718–2724. doi:10.1200/JCO.2011.39.0708

    Article  CAS  PubMed  Google Scholar 

  45. O’Brien NA, McDonald K, Tong L, von Euw E, Kalous O, Conklin D, Hurvitz SA, di Tomaso E, Schnell C, Linnartz R, Finn RS, Hirawat S, Slamon DJ (2014) Targeting PI3K/mTOR overcomes resistance to HER2-targeted therapy independent of feedback activation of AKT. Clin Cancer Res 20(13):3507–3520. doi:10.1158/1078-0432.CCR-13-2769

    Article  PubMed  Google Scholar 

  46. Yunokawa M, Koizumi F, Kitamura Y, Katanasaka Y, Okamoto N, Kodaira M, Yonemori K, Shimizu C, Ando M, Masutomi K, Yoshida T, Fujiwara Y, Tamura K (2012) Efficacy of everolimus, a novel mTOR inhibitor, against basal-like triple-negative breast cancer cells. Cancer Sci. doi:10.1111/j.1349-7006.2012.02359.x

    PubMed  Google Scholar 

  47. Carmena M, Earnshaw WC (2003) The cellular geography of aurora kinases. Nat Rev Mol Cell Biol 4(11):842–854. doi:10.1038/nrm1245

    Article  CAS  PubMed  Google Scholar 

  48. Nigg EA (2001) Mitotic kinases as regulators of cell division and its checkpoints. Nat Rev Mol Cell Biol 2(1):21–32. doi:10.1038/35048096

    Article  CAS  PubMed  Google Scholar 

  49. Yang H, He L, Kruk P, Nicosia SV, Cheng JQ (2006) Aurora-A induces cell survival and chemoresistance by activation of Akt through a p53-dependent manner in ovarian cancer cells. Int J Cancer 119(10):2304–2312. doi:10.1002/ijc.22154

    Article  CAS  PubMed  Google Scholar 

  50. Wang X, Zhou YX, Qiao W, Tominaga Y, Ouchi M, Ouchi T, Deng CX (2006) Overexpression of aurora kinase A in mouse mammary epithelium induces genetic instability preceding mammary tumor formation. Oncogene 25(54):7148–7158. doi:10.1038/sj.onc.1209707

    Article  CAS  PubMed  Google Scholar 

  51. Taga M, Hirooka E, Ouchi T (2009) Essential roles of mTOR/Akt pathway in Aurora-A cell transformation. Int J Biol Sci 5(5):444–450

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Pilot-Storck F, Chopin E, Rual JF, Baudot A, Dobrokhotov P, Robinson-Rechavi M, Brun C, Cusick ME, Hill DE, Schaeffer L, Vidal M, Goillot E (2010) Interactome mapping of the phosphatidylinositol 3-kinase-mammalian target of rapamycin pathway identifies deformed epidermal autoregulatory factor-1 as a new glycogen synthase kinase-3 interactor. Mol Cell Proteomics 9(7):1578–1593. doi:10.1074/mcp.M900568-MCP200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Zhang L, Huang J, Yang N, Greshock J, Liang S, Hasegawa K, Giannakakis A, Poulos N, O’Brien-Jenkins A, Katsaros D, Butzow R, Weber BL, Coukos G (2007) Integrative genomic analysis of phosphatidylinositol 3’-kinase family identifies PIK3R3 as a potential therapeutic target in epithelial ovarian cancer. Clin Cancer Res 13(18):5314–5321. doi:10.1158/1078-0432.CCR-06-2660

    Article  CAS  PubMed  Google Scholar 

  54. Wang X, Urvalek AM, Liu J, Zhao J (2008) Activation of KLF8 transcription by focal adhesion kinase in human ovarian epithelial and cancer cells. J Biol Chem 283(20):13934–13942. doi:10.1074/jbc.M709300200

    Article  CAS  PubMed  Google Scholar 

  55. Ellard SL, Clemons M, Gelmon KA, Norris B, Kennecke H, Chia S, Pritchard K, Eisen A, Vandenberg T, Taylor M, Sauerbrei E, Mishaeli M, Huntsman D, Walsh W, Olivo M, McIntosh L, Seymour L (2009) Randomized phase II study comparing two schedules of everolimus in patients with recurrent/metastatic breast cancer: NCIC Clinical Trials Group IND. 163. J Clin Oncol 27(27):4536–4541. doi:10.1200/JCO.2008.21.3033

    Article  CAS  PubMed  Google Scholar 

  56. Jerusalem G, Andre F, Chen D, Robinson D, Ozguroglu M, Lang I, White M, Toi M, Taran T, Gianni L (2013) Evaluation of everolimus in HER2+ advanced breast cancer with activated PI3K/mTOR pathway: exploratory biomarker observations from the BOLERO-3 European Cancer Congress 2013 Abstract Book in the European Journal of Cancer 49 (Suppl 2):Abs LBA16

Download references

Acknowledgments

DJS received Department of Defense Innovator Award W81XWH-11-1-0104. The work is also funded by a gift to DJS by The Wittich Family Project for Emerging Therapies in Breast Cancer at UCLA’s Jonsson Comprehensive Cancer Center. Dr. Hurvitz receives support from the National Cancer Institute of the National Institutes of Health under Award Number P30CA016042 and from the STOP CANCER Marni Levine Memorial Seed Grant. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Conflict of interest

Sara Hurvitz: travel to international conferences reimbursed by Novartis, Boehringer-Ingelheim, OBI Pharma and Roche, honorarium from Genentech, research funding by Novartis Pharmceuticals, Corp. Dennis J. Slamon: honoraria from Speakers Bureau- Genentech and Sanofi; ownership interest, Amgen; consultant/advisory board, Novartis Pharmaceuticals. Richard Finn: Novartis Pharmaceuticals, Corp research funding. David Chen and Ronald Linnartz: Novartis Pharmaceuticals, Corp. employment and stock ownership. This work was funded in part by Novartis. Other authors have no potential conflict of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara A. Hurvitz.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hurvitz, S.A., Kalous, O., Conklin, D. et al. In vitro activity of the mTOR inhibitor everolimus, in a large panel of breast cancer cell lines and analysis for predictors of response. Breast Cancer Res Treat 149, 669–680 (2015). https://doi.org/10.1007/s10549-015-3282-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-015-3282-x

Keywords

Navigation