Skip to main content

Advertisement

Log in

Cholesterol biosynthesis inhibitors as potent novel anti-cancer agents: suppression of hormone-dependent breast cancer by the oxidosqualene cyclase inhibitor RO 48-8071

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

In most human breast cancers, tumor cell proliferation is estrogen dependent. Although hormone-responsive tumors initially respond to anti-estrogen therapies, most of them eventually develop resistance. Our goal was to identify alternative targets that might be regulated to control breast cancer progression. Sulforhodamine B assay was used to measure the viability of cultured human breast cancer cell lines exposed to various inhibitors. Protein expression in whole-cell extracts was determined by Western blotting. BT-474 tumor xenografts in nude mice were used for in vivo studies of tumor progression. RO 48-8071 ([4′-[6-(Allylmethylamino)hexyloxy]-4-bromo-2′-fluorobenzophenone fumarate]; RO), a small-molecule inhibitor of oxidosqualene cyclase (OSC, a key enzyme in cholesterol biosynthesis), potently reduced breast cancer cell viability. In vitro exposure of estrogen receptor (ER)-positive human breast cancer cells to pharmacological levels of RO or a dose close to the IC50 for OSC (nM) reduced cell viability. Administration of RO to mice with BT-474 tumor xenografts prevented tumor growth, with no apparent toxicity. RO degraded ERα while concomitantly inducing the anti-proliferative protein ERβ. Two other cholesterol-lowering drugs, Fluvastatin and Simvastatin, were less effective in reducing breast cancer cell viability and were found not to induce ERβ. ERβ inhibition or knockdown prevented RO-dependent loss of cell viability. Importantly, RO had no effect on the viability of normal human mammary cells. RO is a potent inhibitor of hormone-dependent human breast cancer cell proliferation. The anti-tumor properties of RO appear to be in part due to an off-target effect that increases the ratio of ERβ/ERα in breast cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

E:

Estrogen

ER:

Estrogen receptor

PR:

Progesterone receptor

OSC:

Oxidosqualene cyclase

RO:

RO 48-8071 ([4′-[6-(Allylmethylamino)hexyloxy]-4-bromo-2′-fluorobenzophenone fumarate])

FBS:

Fetal bovine serum

SRB:

Sulforhodamine B

PI:

Propidium iodide

sc:

Subcutaneous

iv:

Intravenous

PBS:

Phosphate-buffered saline

TBS-T:

Tris-buffered saline containing 0.1 % Tween 20

ANOVA:

Analysis of variance

SE:

Standard error

DPN:

2,3-bis(4-Hydroxyphenyl)-propionitrile

PHTPP:

4-[2-Phenyl-5,7-bis(trifluoromethyl)pyrazolo[1,5-a]pyrimidin-3-yl]phenol

FACS:

Fluorescence-activated cell sorting

References

  1. D’Abreo N, Hindenburg AA (2013) Sex hormone receptors in breast cancer. Vitam Horm 93:99–1331

    Article  PubMed  Google Scholar 

  2. Cordera F, Jordan VC (2006) Steroid receptors and their role in the biology and control of breast cancer growth. Semin Oncol 33:631–641

    Article  CAS  PubMed  Google Scholar 

  3. White R, Parker MG (1998) Molecular mechanisms of steroid hormone action. Endocr Relat Cancer 5:1–14

    Article  CAS  Google Scholar 

  4. Pasqualini JR, Katzenellenbogen BS (eds) (1996) Hormone-dependent cancer. Marcel Dekker Inc., New York

    Google Scholar 

  5. Seeger H, Wallwiener D, Mueck AO (2008) Effects of estradiol and progestogens on tumor-necrosis factor-alpha-induced changes of biochemical markers for breast cancer growth and metastasis. Gynecol Endocrinol 24:576–579

    Article  CAS  PubMed  Google Scholar 

  6. Fisher B, Redmond C, Fisher ER, Caplan R (1988) Relative worth of estrogen or Progesterone receptor and pathologic characteristics of differentiation as indicators of prognosis in node negative breast cancer patients: findings from National Surgical Adjuvant Breast and Bowel Project Protocol B-06. J Clin Oncol 6:1076–1087

    CAS  PubMed  Google Scholar 

  7. Harrell JC, Dye WW, Allred DC et al (2006) Estrogen receptor positive breast cancer metastasis: altered hormonal sensitivity and tumor aggressiveness in lymphatic vessels and lymph nodes. Cancer Res 66:9308–9315

    Article  CAS  PubMed  Google Scholar 

  8. Hyder SM (2006) Sex-steroid regulation of vascular endothelial growth factor in breast cancer. Endocr Relat Cancer 13:667–687

    Article  CAS  PubMed  Google Scholar 

  9. Bailey ST, Shin H, Westerling T, Liu XS, Brown M (2012) Estrogen receptor prevents p53-dependent apoptosis in breast cancer. Proc Natl Acad Sci USA 109:18060–18065

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Fernando RI, Wimalasena J (2004) Estradiol abrogates apoptosis in breast cancer cells through inactivation of BAD: Ras-dependent nongenomic pathways requiring signaling through ERK and Akt. Mol Biol Cell 15:3266–3284

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Schairer C, Lubin J, Troisi R et al (2000) Menopausal estrogen and estrogen-progestin replacement therapy and breast cancer risk. JAMA 283:485–491

    Article  CAS  PubMed  Google Scholar 

  12. Li CI, Malone KE, Porter PL et al (2003) Relationship between long durations and different regimens of hormone therapy and risk of breast cancer. JAMA 289:3254–3263

    Article  CAS  PubMed  Google Scholar 

  13. Chlebowski RT, Hendrix SL, Langer RD et al (2003) Influence of estrogen plus progestin on breast cancer and mammography in healthy postmenopausal women: the Women’s Health Initiative Randomized Trial. JAMA 289:3243–3253

    Article  CAS  PubMed  Google Scholar 

  14. Ross RK, Paganini-Hill A, Wan PC, Pike MC (2000) Effect of hormone replacement therapy on breast cancer risk: estrogen versus estrogen plus progestin. J Natl Cancer Inst 92:328–332

    Article  CAS  PubMed  Google Scholar 

  15. Musgrove EA, Sutherland RL (2009) Biological determinants of endocrine resistance in breast cancer. Nat Rev Cancer 9:631–643

    Article  CAS  PubMed  Google Scholar 

  16. Hiscox S, Morgan L, Green TP (2006) Elevated Src activity promotes cellular invasion and motility in tamoxifen resistant breast cancer cells. Breast Cancer Res Treat 97:263–274

    Article  CAS  PubMed  Google Scholar 

  17. Bulun SE, Simpson ER (2008) Aromatase expression in women’s cancers. Adv Exp Med Biol 630:112–132

    Article  CAS  PubMed  Google Scholar 

  18. Nelson ER, Wardell SE, Jasper JS, Park S, Suchindran S, Howe MK, Carver NJ, Pillai RV, Sullivan PM, Sondhi V, Umetani M, Geradts J, McDonnell DP (2013) 27-Hydroxycholesterol links hypercholesterolemia and breast cancer pathophysiology. Science 342:1094–1098

    Article  CAS  PubMed  Google Scholar 

  19. Wu Q, Ishikawa T, Sirianni R et al (2013) 27-Hydroxycholesterol promotes cell-autonomous, ER-positive breast cancer growth. Cell Rep 5:637–645

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. McTaggart SJ (2006) Isoprenylated proteins. Cell Mol Life Sci 63:255–267

    Article  CAS  PubMed  Google Scholar 

  21. Charlton-Menys V, Durrington PN (2007) Squalene synthase inhibitors: clinical pharmacology and cholesterol-lowering potential. Drugs 67:11–16

    Article  CAS  PubMed  Google Scholar 

  22. Staedler D, Chapuis-Bernasconi C, Dehmlow H et al (2012) Cytotoxic effects of combination of oxidosqualene cyclase inhibitors with atorvastatin in human cancer cells. J Med Chem 55:4990–5002

    Article  CAS  PubMed  Google Scholar 

  23. Thoma R, Schulz-Gasch T, D’Arcy B et al (2004) Insight into steroid scaffold formation from the structure of human oxidosqualene cyclase. Nature 432:118–122

    Article  CAS  PubMed  Google Scholar 

  24. Grinter SZ, Liang Y, Huang SY, Hyder SM, Zou X (2011) An inverse docking approach for identifying new potential anti-cancer targets. J Mol Graph Model 29:795–799

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Treeck O, Lattrich C, Springwald A, Ortmann O (2010) Estrogen receptor beta exerts growth-inhibitory effects on human mammary epithelial cells. Breast Cancer Res Treat 120:557–565

    Article  CAS  PubMed  Google Scholar 

  26. Paruthiyil S, Parmar H, Kerekatte V et al (2004) Estrogen receptor beta inhibits human breast cancer cell proliferation and tumor formation by causing a G2 cell cycle arrest. Cancer Res 64:423–428

    Article  CAS  PubMed  Google Scholar 

  27. Warner M, Gustafsson JA (2010) The role of estrogen receptor beta (ERbeta) in malignant diseases—a new potential target for antiproliferative drugs in prevention and treatment of cancer. Biochem Biophys Res Commun 396:63–66

    Article  CAS  PubMed  Google Scholar 

  28. Deroo BJ, Buensuceso AV (2010) Minireview: estrogen receptor-beta: mechanistic insights from recent studies. Mol Endocrinol 24:1703–1714

    Article  CAS  PubMed  Google Scholar 

  29. Hartman J, Lindberg K, Morani A et al (2006) Estrogen receptor beta inhibits angiogenesis and growth of T47D breast cancer xenografts. Cancer Res 66:11207–11213

    Article  CAS  PubMed  Google Scholar 

  30. Dehmlow H, Aebi JD, Jolidon S et al (2003) Synthesis and structure-activity studies of novel orally active non-terpenoic 2,3-oxidosqualene cyclase inhibitors. J Med Chem 46:3354–3370

    Article  CAS  PubMed  Google Scholar 

  31. Liang Y, Besch-Williford C, Benakanakere I, Hyder SM (2007) Re-activation of p53 pathway inhibits growth of hormone-dependent human breast cancer cells in vitro and in vivo. Int J Oncol 31:777–784

    CAS  PubMed  Google Scholar 

  32. Liang Y, Brekken RA, Hyder SM (2006) VEGF induces proliferation of breast cancer cells and counteracts the anti-proliferative activity of anti-hormones. Endocr Relat Cancer 13:905–919

    Article  CAS  PubMed  Google Scholar 

  33. Liang Y, Besch-Williford C, Benakanakere I, Thorpe PE, Hyder SM (2011) Targeting mutant p53 protein and the tumor vasculature: an effective combination therapy for advanced breast tumors. Breast Cancer Res Treat 125:407–420

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Mafuvadze B, Benakanakere I, López Pérez FR, Besch-Williford C, Ellersieck MR, Hyder SM (2011) Apigenin prevents development of medroxyprogesterone acetate-accelerated 7,12-dimethylbenz(a)anthracene-induced mammary tumors in Sprague-Dawley rats. Cancer Prev Res 4:1316–1324

    Article  CAS  Google Scholar 

  35. Fan M, Bigsby RM, Nephew KP (2003) The NEDD8 pathway is required for proteasome- mediated degradation of human estrogen receptor (ER)-alpha and essential for the antiproliferative activity of ICI 182,780 in ERalpha-positive breast cancer cells. Mol Endocrinol 17:356–365

    Article  CAS  PubMed  Google Scholar 

  36. Yeh WL, Shioda K, Coser KR, Rivizzigno D, McSweeney KR, Shioda T (2013) Fulvestrant-induced cell death and proteasomal degradation of estrogen receptor α protein in MCF-7 cells require the CSK c-Src tyrosine kinase. PLoS ONE 8:e60889

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Ström A, Hartman J, Foster JS, Kietz S, Wimalasena J, Gustafsson JA (2004) Estrogen receptor beta inhibits 17beta-estradiol-stimulated proliferation of the breast cancer cell line T47D. Proc Natl Acad Sci USA 101:1566–1571

    Article  PubMed Central  PubMed  Google Scholar 

  38. Allred DC, Clark GM, Tandon AK, Molina R, Tormey DC, Osborne CK, Gilchrist KW, Mansour EG, Abeloff M, Eudey L et al (1992) HER-2/neu in node-negative breast cancer: prognostic significance of overexpression influenced by the presence of in situ carcinoma. J Clin Oncol 10:599–605

    CAS  PubMed  Google Scholar 

  39. Agrup M, Stål O, Olsen K, Wingren S (2000) C-erbB-2 overexpression and survival in early onset breast cancer. Breast Cancer Res Treat 63:23–29

    Article  CAS  PubMed  Google Scholar 

  40. Nawaz Z, Lonard DM, Dennis AP et al (1999) Proteasome-dependent degradation of the human estrogen receptor. Proc Natl Acad Sci USA 96:1858–1862

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Robertson JF (2001) ICI 182,780 (Fulvestrant)-the first oestrogen receptor down-regulator—current clinical data. Br J Cancer 85(Suppl 2):11–14

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Wardell SE, Marks JR, McDonnell DP (2011) The turnover of estrogen receptor α by the selective estrogen receptor degrader (SERD) fulvestrant is a saturable process that is not required for antagonist efficacy. Biochem Pharmacol 82:122–130

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Gallagher A, Chambers TJ, Tobias JH (1993) The estrogen antagonist ICI 182,780 reduces cancellous bone volume in female rats. Endocrinology 133:2787–2791

    CAS  PubMed  Google Scholar 

  44. Sotoca AM, van den Berg H, Vervoort J, van der Saag P, Ström A, Gustafsson JA, Rietjens I, Murk AJ (2008) Influence of cellular ERalpha/ERbeta ratio on the ERalpha-agonist induced proliferation of human T47D breast cancer cells. Toxicol Sci 105:303–311

    Article  PubMed  Google Scholar 

  45. Lindberg MK, Movérare S, Skrtic S et al (2003) Estrogen receptor (ER)-beta reduces ERalpha-regulated gene transcription, supporting a “ying yang” relationship between ER-alpha and ERbeta in mice. Mol Endocrinol 17:203–208

    Article  CAS  PubMed  Google Scholar 

  46. Williams C, Edvardsson K, Lewandowski SA et al (2008) A genome-wide study of the repressive effects of estrogen receptor beta on estrogen receptor alpha signaling in breast cancer cells. Oncogene 27:1019–1032

    Article  CAS  PubMed  Google Scholar 

  47. Thomas C, Gustafsson JA (2011) The different roles of ER subtypes in cancer biology and therapy. Nat Rev Cancer 11:597–608

    Article  CAS  PubMed  Google Scholar 

  48. Madeira M, Mattar A, Logullo AF, Soares FA, Gebrim LH (2013) Estrogen receptor alpha/beta ratio and estrogen receptor beta as predictors of endocrine therapy responsiveness-a randomized neoadjuvant trial comparison between anastrozole and tamoxifen for the treatment of postmenopausal breast cancer. BMC Cancer 13:425

    Article  PubMed Central  PubMed  Google Scholar 

  49. Wyld DK, Chester JD, Perren TJ (1998) Endocrine aspects of the clinical management of breast cancer-current issues. Endocr Relat Cancer 5:97–110

    Article  CAS  Google Scholar 

  50. Chen S, Bangaru ML, Sneade L et al (2009) Epidermal growth factor receptor cross-talks with ligand-occupied estrogen receptor-alpha to modulate both lactotroph proliferation and prolactin gene expression. Am J Physiol Endocrinol Metab 297:331–339

    Article  Google Scholar 

Download references

Acknowledgments

Supported by a Department of Defense Breast Cancer Program Grant W81XWH-12-1-0191, the National Institutes of Health Grant R21 GM088517, and by a Faculty Research Grant from the University of Missouri, Columbia. SMH is the Zalk Missouri Professor of Tumor Angiogenesis. Funds to purchase the nanodrop instrument were provided through the generosity of numerous donors to the Ellis Fischel Cancer Center.

Conflict of interest

JDA is an employee of F. Hoffmann-La Roche AG. All other authors declare that they have no conflict of interest.

Ethical standards

The experiments comply with the current laws of the country in which they were performed (USA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salman M. Hyder.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 127 kb)

Supplementary material 2 (TIFF 52 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Y., Besch-Williford, C., Aebi, J.D. et al. Cholesterol biosynthesis inhibitors as potent novel anti-cancer agents: suppression of hormone-dependent breast cancer by the oxidosqualene cyclase inhibitor RO 48-8071. Breast Cancer Res Treat 146, 51–62 (2014). https://doi.org/10.1007/s10549-014-2996-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-014-2996-5

Keywords

Navigation