Skip to main content

Advertisement

Log in

Differential characteristics of heart, liver, and brain metastatic subsets of murine breast carcinoma

  • Preclinical Study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Breast carcinoma is comprised of heterogeneous groups of cells with different metastatic potential. To develop effective therapeutic strategies targeting metastatic disease, it is crucial to understand the characteristics of breast cancer cells that enable metastasis to distant organs. 4THM breast carcinoma cells are the cells of 4T1 primary tumors that metastasized to the heart. Cells of 4THM tumors which metastasized to liver (4TLM) were previously isolated. Recently macroscopic brain metastasis in 4THM injected animals, were isolated to obtain a brain metastatic cell line (4TBM). Using an orthotopic mouse model differential characteristic of cells metastasized to heart (4THM), liver (4TLM), and brain (4TBM) were compared for ability to metastasize and expression of stem cell markers. We found that 4TLM cells produced significantly more lung and liver metastasis compared to 4TBM and 4THM cells. In vitro, proliferation as well as migration rate of 4TLM cells was also significantly higher than the other cell lines. Remarkably primary tumors formed by 4TLM cells expressed significant amounts of CD34, a marker for mesenchymal malignancies. Markers of epithelial–mesenchymal transition were expressed in all metastatic cells, but the degree of expression differed. Majorities of 4TLM, 4THM, and 4TBM cells were CD44+ CD24− whereas, 12 % of 4TLM cells also expressed membranous CD24. Conditioned mediums of non-metastatic 67NR breast tumors and cancer-associated fibroblasts inhibited growth of highly metastatic 4TLM cells. Malignant cells metastasized to brain were distinguished by membranous E-cadherin expression that was markedly higher in 4TBM cells grown as spheroids suggesting E-cadherin is required for brain metastasis. Differential features of heart, brain, and liver metastatic cells in a syngenic model was shown in this study for the first time. These findings not only provide a model to explore new treatment modalities, but also demonstrate differential features of cancer cells that originally homed to a certain organ, such as liver or brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CSC:

Cancer stem cells

EMT:

Epithelial–mesenchymal transition

VEGF:

Vascular endothelial growth factor

SDF 1:

Stromal cell-derived factor-1

CM:

Conditioned mediums

CAF:

Cancer-associated fibroblasts

α-SMA:

α-Smooth muscle actin

References

  1. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM (2010) Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 127:2893–2917

    Article  PubMed  CAS  Google Scholar 

  2. Sakorafas GH, Tsiotou AG (2000) Ductal carcinoma in situ (DCIS) of the breast: evolving perspectives. Cancer Treat Rev 26:103–125

    Article  PubMed  CAS  Google Scholar 

  3. Valastyan S, Weinberg RA (2011) Tumor metastasis: molecular insights and evolving paradigms. Cell 147:275–292

    Article  PubMed  CAS  Google Scholar 

  4. Hess KR, Varadhachary GR, Taylor SH, Wei W, Raber MN, Lenzi R, Abbruzzese JL (2006) Metastatic patterns in adenocarcinoma. Cancer 106:1624–1633

    Article  PubMed  Google Scholar 

  5. Liu R, Wang X, Chen GY, Dalerba P, Gurney A, Hoey T, Sherlock G, Lewicki J, Shedden K, Clarke MF (2007) The prognostic role of a gene signature from tumorigenic breast-cancer cells. N Engl J Med 356:217–226

    Article  PubMed  CAS  Google Scholar 

  6. Charafe-Jauffret E, Ginestier C, Iovino F, Wicinski J, Cervera N, Finetti P, Hur MH, Diebel ME, Monville F, Dutcher J, Brown M, Viens P, Xerri L, Bertucci F, Stassi G, Dontu G, Birnbaum D, Wicha MS (2009) Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature. Cancer Res 69:1302–1313

    Article  PubMed  CAS  Google Scholar 

  7. Abraham BK, Fritz P, McClellan M, Hauptvogel P, Athelogou M, Brauch H (2005) Prevalence of CD44 +/CD24-/low cells in breast cancer may not be associated with clinical outcome but may favor distant metastasis. Clin Cancer Res 11:1154–1159

    PubMed  CAS  Google Scholar 

  8. Nathoo N, Chahlavi A, Barnett GH, Toms SA (2005) Pathobiology of brain metastases. J Clin Pathol 58:237–242

    Article  PubMed  CAS  Google Scholar 

  9. Patel RR, Mehta MP (2007) Targeted therapy for brain metastases: improving the therapeutic ratio. Clin Cancer Res 13:1675–1683

    Article  PubMed  CAS  Google Scholar 

  10. Gondi V, Mehta MP (2010) Novel insights into the management of brain metastases. Curr Opin Neurol 23:556–562

    Article  PubMed  Google Scholar 

  11. Tampellini M, Berruti A, Gerbino A, Buniva T, Torta M, Gorzegno G, Faggiuolo R, Cannone R, Farris A, Destefanis M, Moro G, Deltetto F, Dogliotti L (1997) Relationship between CA 15–3 serum levels and disease extent in predicting overall survival of breast cancer patients with newly diagnosed metastatic disease. Br J Cancer 75:698–702

    Article  PubMed  CAS  Google Scholar 

  12. Steeg PS, Theodorescu D (2008) Metastasis: a therapeutic target for cancer. Nat Clin Pract Oncol 5:206–219

    Article  PubMed  CAS  Google Scholar 

  13. Erin N, Akdas BG, Harms JF, Clawson GA (2008) Vagotomy enhances experimental metastases of 4THMpc breast cancer cells and alters substance P level. Regul Pept 151:35–42

    Article  PubMed  CAS  Google Scholar 

  14. Erin N, Boyer PJ, Bonneau RH, Clawson GA, Welch DR (2004) Capsaicin-mediated denervation of sensory neurons promotes mammary tumor metastasis to lung and heart. Anticancer Res 24:1003–1009

    PubMed  Google Scholar 

  15. Erin N, Zhao W, Bylander J, Chase G, Clawson G (2006) Capsaicin-induced inactivation of sensory neurons promotes a more aggressive gene expression phenotype in breast cancer cells. Breast Cancer Res Treat 99:351–364

    Article  PubMed  CAS  Google Scholar 

  16. Erin N, Wang N, Xin P, Bui V, Weisz J, Barkan GA, Zhao W, Shearer D, Clawson GA (2009) Altered gene expression in breast cancer liver metastases. Int J Cancer 124:1503–1516

    Article  PubMed  CAS  Google Scholar 

  17. Aslakson CJ, Miller FR (1992) Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor. Cancer Res 52:1399–1405

    PubMed  CAS  Google Scholar 

  18. Erin N, Duymus O, Ozturk S, Demir N (2012) Activation of vagus nerve by semapimod alters substance P levels and decreases breast cancer metastasis. Regul Pept 179:101–108

    Article  PubMed  CAS  Google Scholar 

  19. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 100:3983–3988

    Article  PubMed  CAS  Google Scholar 

  20. Brown LF, Berse B, Van de Water L, Papadopoulos-Sergiou A, Perruzzi CA, Manseau EJ, Dvorak HF, Senger DR (1992) Expression and distribution of osteopontin in human tissues: widespread association with luminal epithelial surfaces. Mol Biol Cell 3:1169–1180

    PubMed  CAS  Google Scholar 

  21. Zoller M (2011) CD44: can a cancer-initiating cell profit from an abundantly expressed molecule? Nat Rev Cancer 11:254–267

    Article  PubMed  Google Scholar 

  22. Sun H, Jia J, Wang X, Ma B, Di L, Song G, Ren J (2013) CD44(+)/CD24 (-) breast cancer cells isolated from MCF-7 cultures exhibit enhanced angiogenic properties. Clin Transl Oncol 15:46–54

    Article  PubMed  CAS  Google Scholar 

  23. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, Campbell LL, Polyak K, Brisken C, Yang J, Weinberg RA (2008) The epithelial–mesenchymal transition generates cells with properties of stem cells. Cell 133:704–715

    Article  PubMed  CAS  Google Scholar 

  24. Li W, Liu F, Lei T, Xu X, Liu B, Cui L, Wei J, Guo X, Lang R, Fan Y, Gu F, Tang P, Zhang X, Fu L (2010) The clinicopathological significance of CD44 +/CD24-/low and CD24 + tumor cells in invasive micropapillary carcinoma of the breast. Pathol Res Pract 206:828–834

    Article  PubMed  CAS  Google Scholar 

  25. Baumann P, Cremers N, Kroese F, Orend G, Chiquet-Ehrismann R, Uede T, Yagita H, Sleeman JP (2005) CD24 expression causes the acquisition of multiple cellular properties associated with tumor growth and metastasis. Cancer Res 65:10783–10793

    Article  PubMed  CAS  Google Scholar 

  26. Huber MA, Kraut N, Beug H (2005) Molecular requirements for epithelial–mesenchymal transition during tumor progression. Curr Opin Cell Biol 17:548–558

    Article  PubMed  CAS  Google Scholar 

  27. Nieman MT, Prudoff RS, Johnson KR, Wheelock MJ (1999) N-cadherin promotes motility in human breast cancer cells regardless of their E-cadherin expression. J Cell Biol 147:631–644

    Article  PubMed  CAS  Google Scholar 

  28. Perotti A, Sessa C, Mancuso A, Noberasco C, Cresta S, Locatelli A, Carcangiu ML, Passera K, Braghetti A, Scaramuzza D, Zanaboni F, Fasolo A, Capri G, Miani M, Peters WP, Gianni L (2009) Clinical and pharmacological phase I evaluation of Exherin (ADH-1), a selective anti-N-cadherin peptide in patients with N-cadherin-expressing solid tumours. Ann Oncol 20:741–745

    Article  PubMed  CAS  Google Scholar 

  29. Liu S, Miao Y, Fan C, Liu Y, Yu J, Zhang Y, Dai S, Wang E (2012) Clinicopathologic correlations of liver kinase B1, E-cadherin, and N-cadherin expression in non-small cell lung cancer. Appl Immunohistochem Mol Morphol

  30. Gilles C, Polette M, Mestdagt M, Nawrocki-Raby B, Ruggeri P, Birembaut P, Foidart JM (2003) Transactivation of vimentin by beta-catenin in human breast cancer cells. Cancer Res 63:2658–2664

    PubMed  CAS  Google Scholar 

  31. Korsching E, Packeisen J, Liedtke C, Hungermann D, Wulfing P, van Diest PJ, Brandt B, Boecker W, Buerger H (2005) The origin of vimentin expression in invasive breast cancer: epithelial–mesenchymal transition, myoepithelial histogenesis or histogenesis from progenitor cells with bilinear differentiation potential? J Pathol 206:451–457

    Article  PubMed  CAS  Google Scholar 

  32. Ashiru O, Boutet P, Fernandez-Messina L, Aguera-Gonzalez S, Skepper JN, Vales-Gomez M, Reyburn HT (2010) Natural killer cell cytotoxicity is suppressed by exposure to the human NKG2D ligand MICA*008 that is shed by tumor cells in exosomes. Cancer Res 70:481–489

    Article  PubMed  CAS  Google Scholar 

  33. Hu J, Qin K, Zhang Y, Gong J, Li N, Lv D, Xiang R, Tan X (2011) Downregulation of transcription factor Oct4 induces an epithelial-to-mesenchymal transition via enhancement of Ca2 + influx in breast cancer cells. Biochem Biophys Res Commun 411:786–791

    Article  PubMed  CAS  Google Scholar 

  34. Tsuda H, Takarabe T, Hasegawa F, Fukutomi T, Hirohashi S (2000) Large, central acellular zones indicating myoepithelial tumor differentiation in high-grade invasive ductal carcinomas as markers of predisposition to lung and brain metastases. Am J Surg Pathol 24:197–202

    Article  PubMed  CAS  Google Scholar 

  35. Hunt NC, Douglas-Jones AG, Jasani B, Morgan JM, Pignatelli M (1997) Loss of E-cadherin expression associated with lymph node metastases in small breast carcinomas. Virchows Arch 430:285–289

    Article  PubMed  CAS  Google Scholar 

  36. Kowalski PJ, Rubin MA, Kleer CG (2003) E-cadherin expression in primary carcinomas of the breast and its distant metastases. Breast Cancer Res 5:R217–R222

    Article  PubMed  CAS  Google Scholar 

  37. Dong HM, Liu G, Wu J, Lu JS, Luo JM, Shen ZZ, Shao ZM (2006) Biological significance of E-cadherin in an inflammatory breast carcinoma cell line. Zhonghua Zhong Liu Za Zhi 28:4–7

    PubMed  Google Scholar 

  38. Tsuji T, Ibaragi S, Hu GF (2009) Epithelial–mesenchymal transition and cell cooperativity in metastasis. Cancer Res 69:7135–7139

    Article  PubMed  CAS  Google Scholar 

  39. Zhang X, Hashemi SS, Yousefi M, Gao C, Sheng J, Ni J, Wang W, Mason J, Man YG (2009) Atypical E-cadherin expression in cell clusters overlying focally disrupted mammary myoepithelial cell layers: implications for tumor cell motility and invasion. Pathol Res Pract 205:375–385

    Article  PubMed  CAS  Google Scholar 

  40. Chao Y, Wu Q, Acquafondata M, Dhir R, Wells A (2012) Partial mesenchymal to epithelial reverting transition in breast and prostate cancer metastases. Cancer Microenviron 5:19–28

    Article  PubMed  CAS  Google Scholar 

  41. Garber K (2002) Angiogenesis inhibitors suffer new setback. Nat Biotechnol 20:1067–1068

    Article  PubMed  CAS  Google Scholar 

  42. Sakariassen PO, Prestegarden L, Wang J, Skaftnesmo KO, Mahesparan R, Molthoff C, Sminia P, Sundlisaeter E, Misra A, Tysnes BB, Chekenya M, Peters H, Lende G, Kalland KH, Oyan AM, Petersen K, Jonassen I, van der Kogel A, Feuerstein BG, Terzis AJ, Bjerkvig R, Enger PO (2006) Angiogenesis-independent tumor growth mediated by stem-like cancer cells. Proc Natl Acad Sci U S A 103:16466–16471

    Article  PubMed  CAS  Google Scholar 

  43. Song N, Huang Y, Shi H, Yuan S, Ding Y, Song X, Fu Y, Luo Y (2009) Overexpression of platelet-derived growth factor-BB increases tumor pericyte content via stromal-derived factor-1alpha/CXCR4 axis. Cancer Res 69:6057–6064

    Article  PubMed  CAS  Google Scholar 

  44. Wendel C, Hemping-Bovenkerk A, Krasnyanska J, Mees ST, Kochetkova M, Stoeppeler S, Haier J (2012) CXCR4/CXCL12 participate in extravasation of metastasizing breast cancer cells within the liver in a rat model. PLoS ONE 7:e30046

    Article  PubMed  CAS  Google Scholar 

  45. Smith MC, Luker KE, Garbow JR, Prior JL, Jackson E, Piwnica-Worms D, Luker GD (2004) CXCR4 regulates growth of both primary and metastatic breast cancer. Cancer Res 64:8604–8612

    Article  PubMed  CAS  Google Scholar 

  46. da Silva BB, Lopes-Costa PV, dos Santos AR, de Sousa-Junior EC, Alencar AP, Pires CG, Rosal MA (2009) Comparison of three vascular endothelial markers in the evaluation of microvessel density in breast cancer. Eur J Gynaecol Oncol 30:285–288

    PubMed  Google Scholar 

  47. Chen YT, Chen WT, Huang WT, Wu CC, Chai CY (2012) Expression of MMP-2, MMP-9 and MMP-11 in dermatofibroma and dermatofibrosarcoma protuberans. Kaohsiung J Med Sci 28:545–549

    Article  PubMed  CAS  Google Scholar 

  48. Takahashi RH, Matsubayashi J, Yokotsuka M, Tachibana M, Kusama H, Nagao T (2012) An intrapelvic extraintestinal gastrointestinal stromal tumor of undetermined origin: diagnosis by prostate needle biopsy. Pathol Res Pract 208:736–740

    Article  PubMed  Google Scholar 

  49. Mao Y, Keller ET, Garfield DH, Shen K, Wang J (2012) Stromal cells in tumor microenvironment and breast cancer. Cancer Metastasis Rev 32(1–2):303–315

    Google Scholar 

Download references

Acknowledgments

Study was supported by The Scientific and Technological Research Council of Turkey (TÜBİTAK Grant No: 109S449). Authors thank Prof. Dr. Necdet Demir for his suggestions in interpreting the immunohistochemical staining, and Sayra Dilmaç for her technical assistance.

Conflict of interest

The authors also declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuray Erin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (RAR 843 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erin, N., Kale, Ş., Tanrıöver, G. et al. Differential characteristics of heart, liver, and brain metastatic subsets of murine breast carcinoma. Breast Cancer Res Treat 139, 677–689 (2013). https://doi.org/10.1007/s10549-013-2584-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-013-2584-0

Keywords

Navigation