Skip to main content

Advertisement

Log in

T cells sensitized with breast tumor progenitor cell vaccine have therapeutic activity against spontaneous HER2/neu tumors

  • Preclinical Study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Cancer progenitor cells are critical for tumor initiation and recurrence so they are an important therapeutic target. We tested whether T cells could recognize tumor antigens expressed by breast cancer progenitor cells and acquire therapeutic activity against established metastases or delay onset of spontaneous tumors. Breast tumors were derived from HER2/neu transgenic mice and propagated in vitro under conditions that selected progenitor cells which were then used as an irradiated whole cell vaccine. A minor subset of recently sensitized T cells was isolated from vaccine-draining lymph nodes then activated in vitro to achieve numerical expansion. We show that the tumor progenitor cell vaccines reversed tolerance to a known HER2/neu epitope, otherwise inhibited by Treg cells. Additional shared tumor antigens were recognized because a Neuneg subclone also induced a Th1 type immune response against breast tumors. Adoptive transfer of in vitro activated lymph node T cells-mediated regression of established metastases from multiple independently derived breast tumor lines. Moreover, adoptive transfer of effector T cells into Neu-tolerant mice, months before the onset of spontaneous tumors, significantly postponed tumor development. Interestingly, T-cell-mediated lysis of metastases stimulated an IgG response to HER2/neu as well as other shared antigens. In summary, tumor progenitor cells contain shared antigens which can lead to a cross-protective T-cell response. Moreover, antigens acquired during immune-mediated tumor destruction are presented in a manner conducive to reversal of tolerance and Ig class switching. These complementary effector mechanisms might augment therapy by eliminating refractory breast cancer stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dalerba P, Cho RW, Clarke MF (2007) Cancer stem cells: models and concepts. Annu Rev Med 58:267–284

    Article  PubMed  CAS  Google Scholar 

  2. O’Brien CA, Kreso A, Jamieson CH (2010) Cancer stem cells and self-renewal. Clin Cancer Res 16(12):3113–3120

    Article  PubMed  Google Scholar 

  3. Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414(6859):105–111

    Article  PubMed  CAS  Google Scholar 

  4. Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3(7):730–737

    Article  PubMed  CAS  Google Scholar 

  5. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, Minden M, Paterson B, Caligiuri MA, Dick JE (1994) A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367(6464):645–648

    Article  PubMed  CAS  Google Scholar 

  6. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100(7):3983–3988

    Article  PubMed  CAS  Google Scholar 

  7. Dontu G, Al-Hajj M, Abdallah WM, Clarke MF, Wicha MS (2003) Stem cells in normal breast development and breast cancer. Cell Prolif 36(Suppl 1):59–72

    Article  PubMed  CAS  Google Scholar 

  8. Kakarala M, Wicha MS (2008) Implications of the cancer stem-cell hypothesis for breast cancer prevention and therapy. J Clin Oncol 26(17):2813–2820

    Article  PubMed  Google Scholar 

  9. Liu JC, Deng T, Lehal RS, Kim J, Zacksenhaus E (2007) Identification of tumorsphere- and tumor-initiating cells in HER2/Neu-induced mammary tumors. Cancer Res 67(18):8671–8681

    Article  PubMed  CAS  Google Scholar 

  10. Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255(5052):1707–1710

    Article  PubMed  CAS  Google Scholar 

  11. Reynolds BA, Weiss S (1996) Clonal and population analyses demonstrate that an EGF-responsive mammalian embryonic CNS precursor is a stem cell. Dev Biol 175(1):1–13

    Article  PubMed  CAS  Google Scholar 

  12. Brown CE, Starr R, Martinez C, Aguilar B, D’Apuzzo M, Todorov I et al (2009) Recognition and killing of brain tumor stem-like initiating cells by CD8+ cytolytic T cells. Cancer Res 69(23):8886–8893

    Article  PubMed  CAS  Google Scholar 

  13. Pellegatta S, Poliani PL, Corno D, Menghi F, Ghielmetti F, Suarez-Merino B et al (2006) Neurospheres enriched in cancer stem-like cells are highly effective in eliciting a dendritic cell-mediated immune response against malignant gliomas. Cancer Res 66(21):10247–10252

    Article  PubMed  CAS  Google Scholar 

  14. Xu Q, Liu G, Yuan X, Xu M, Wang H, Ji J et al (2009) Antigen-specific T-cell response from dendritic cell vaccination using cancer stem-like cell-associated antigens. Stem Cells 27(8):1734–1740

    Article  PubMed  CAS  Google Scholar 

  15. Ravdin PM, Chamness GC (1995) The c-erbB-2 proto-oncogene as a prognostic and predictive marker in breast cancer: a paradigm for the development of other macromolecular markers—a review. Gene 159(1):19–27

    Article  PubMed  CAS  Google Scholar 

  16. Schechter AL, Stern DF, Vaidyanathan L, Decker SJ, Drebin JA, Greene MI et al (1984) The neu oncogene: an erb-B-related gene encoding a 185, 000-Mr tumour antigen. Nature 312(5994):513–516

    Article  PubMed  CAS  Google Scholar 

  17. Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE et al (1989) Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 244(4905):707–712

    Article  PubMed  CAS  Google Scholar 

  18. Freudenberg JA, Wang Q, Katsumata M, Drebin J, Nagatomo I, Greene MI (2009) The role of HER2 in early breast cancer metastasis and the origins of resistance to HER2-targeted therapies. Exp Mol Pathol 87(1):1–11

    Article  PubMed  CAS  Google Scholar 

  19. Korkaya H, Paulson A, Iovino F, Wicha MS (2008) HER2 regulates the mammary stem/progenitor cell population driving tumorigenesis and invasion. Oncogene 27(47):6120–6130

    Article  PubMed  CAS  Google Scholar 

  20. Baxevanis CN, Voutsas IF, Gritzapis AD, Perez SA, Papamichail M (2010) HER-2/neu as a target for cancer vaccines. Immunotherapy 2(2):213–226

    Article  PubMed  CAS  Google Scholar 

  21. Disis ML, Pupa SM, Gralow JR, Dittadi R, Menard S, Cheever MA (1997) High-titer HER-2/neu protein-specific antibody can be detected in patients with early-stage breast cancer. J Clin Oncol 15(11):3363–3367

    PubMed  CAS  Google Scholar 

  22. Disis ML, Calenoff E, McLaughlin G, Murphy AE, Chen W, Groner B et al (1994) Existent T-cell and antibody immunity to HER-2/neu protein in patients with breast cancer. Cancer Res 54(1):16–20

    PubMed  CAS  Google Scholar 

  23. Mittendorf EA, Holmes JP, Ponniah S, Peoples GE (2008) The E75 HER2/neu peptide vaccine. Cancer Immunol Immunother 57(10):1511–1521

    Article  PubMed  CAS  Google Scholar 

  24. Disis ML, Wallace DR, Gooley TA, Dang Y, Slota M, Lu H et al (2009) Concurrent trastuzumab and HER2/neu-specific vaccination in patients with metastatic breast cancer. J Clin Oncol 27(28):4685–4692

    Article  PubMed  CAS  Google Scholar 

  25. Guy CT, Webster MA, Schaller M, Parsons TJ, Cardiff RD, Muller WJ (1992) Expression of the neu protooncogene in the mammary epithelium of transgenic mice induces metastatic disease. Proc Natl Acad Sci USA 89(22):10578–10582

    Article  PubMed  CAS  Google Scholar 

  26. Kagamu H, Touhalisky JE, Plautz GE, Krauss JC, Shu S (1996) Isolation based on L-selectin expression of immune effector T cells derived from tumor-draining lymph nodes. Cancer Res 56(19):4338–4342

    PubMed  CAS  Google Scholar 

  27. Wang LX, Chen BG, Plautz GE (2002) Adoptive immunotherapy of advanced tumors with CD62 L-selectin (low) tumor-sensitized T lymphocytes following ex vivo hyperexpansion. J Immunol 169(6):3314–3320

    PubMed  CAS  Google Scholar 

  28. Wang LX, Huang WX, Graor H, Cohen PA, Kim JA, Shu S et al (2004) Adoptive immunotherapy of cancer with polyclonal, 108-fold hyperexpanded, CD4+ and CD8+ T cells. J Transl Med 2(1):41

    Article  PubMed  Google Scholar 

  29. Wang LX, Shu S, Disis ML, Plautz GE (2007) Adoptive transfer of tumor-primed, in vitro-activated, CD4+ T effector cells (TEs) combined with CD8+ TEs provides intratumoral TE proliferation and synergistic antitumor response. Blood 109(11):4865–4876

    Article  PubMed  CAS  Google Scholar 

  30. Wang LX, Shu S, Plautz GE (2005) Host lymphodepletion augments T cell adoptive immunotherapy through enhanced intratumoral proliferation of effector cells. Cancer Res 65(20):9547–9554

    Article  PubMed  CAS  Google Scholar 

  31. Reilly RT, Gottlieb MB, Ercolini AM, Machiels JP, Kane CE, Okoye FI (2000) HER-2/neu is a tumor rejection target in tolerized HER-2/neu transgenic mice. Cancer Res 60(13):3569–3576

    PubMed  CAS  Google Scholar 

  32. Ercolini AM, Machiels JP, Chen YC, Slansky JE, Giedlen M, Reilly RT et al (2003) Identification and characterization of the immunodominant rat HER-2/neu MHC class I epitope presented by spontaneous mammary tumors from HER-2/neu-transgenic mice. J Immunol 170(8):4273–4280

    PubMed  CAS  Google Scholar 

  33. Ercolini AM, Ladle BH, Manning EA, Pfannenstiel LW, Armstrong TD, Machiels JP et al (2005) Recruitment of latent pools of high-avidity CD8(+) T cells to the antitumor immune response. J Exp Med 201(10):1591–1602

    Article  PubMed  CAS  Google Scholar 

  34. Plautz GE, Mukai S, Cohen PA, Shu S (2000) Cross-presentation of tumor antigens to effector T cells is sufficient to mediate effective immunotherapy of established intracranial tumors. J Immunol 165(7):3656–3662

    PubMed  CAS  Google Scholar 

  35. Meyer MJ, Fleming JM, Ali MA, Pesesky MW, Ginsburg E, Vonderhaar BK (2009) Dynamic regulation of CD24 and the invasive, CD44posCD24neg phenotype in breast cancer cell lines. Breast Cancer Res 11(6):R82

    Article  PubMed  Google Scholar 

  36. Wang LX, Kjaergaard J, Cohen PA, Shu S, Plautz GE (2004) Memory T cells originate from adoptively transferred effectors and reconstituting host cells after sequential lymphodepletion and adoptive immunotherapy. J Immunol 172(6):3462–3468

    PubMed  CAS  Google Scholar 

  37. Singh R, Dominiecki ME, Jaffee EM, Paterson Y (2005) Fusion to Listeriolysin O and delivery by Listeria monocytogenes enhances the immunogenicity of HER-2/neu and reveals subdominant epitopes in the FVB/N mouse. J Immunol 175(6):3663–3673

    PubMed  CAS  Google Scholar 

  38. Singh R, Paterson Y (2006) Vaccination strategy determines the emergence and dominance of CD8+ T-cell epitopes in a FVB/N rat HER-2/neu mouse model of breast cancer. Cancer Res 66(15):7748–7757

    Article  PubMed  CAS  Google Scholar 

  39. Uram JN, Black CM, Flynn E, Huang L, Armstrong TD, Jaffee EM (2011) Nondominant CD8 T cells are active players in the vaccine-induced antitumor immune response. J Immunol 186(7):3847–3857

    Article  PubMed  CAS  Google Scholar 

  40. Wood LD, Parsons DW, Jones S, Lin J, Sjoblom T, Leary RJ et al (2007) The genomic landscapes of human breast and colorectal cancers. Science 318(5853): 1108–1113. doi:10.1126/science.1145720

    Google Scholar 

  41. Stephens PJ, McBride DJ, Lin ML, Varela I, Pleasance ED, Simpson JT et al (2009) Complex landscapes of somatic rearrangement in human breast cancer genomes. Nature 462(7276):1005–1010

    Article  PubMed  CAS  Google Scholar 

  42. Atanackovic D, Arfsten J, Cao Y, Gnjatic S, Schnieders F, Bartels K et al (2007) Cancer-testis antigens are commonly expressed in multiple myeloma and induce systemic immunity following allogeneic stem cell transplantation. Blood 109(3):1103–1112

    Article  PubMed  CAS  Google Scholar 

  43. Bernhard H, Neudorfer J, Gebhard K, Conrad H, Hermann C, Nahrig J et al (2008) Adoptive transfer of autologous, HER2-specific, cytotoxic T lymphocytes for the treatment of HER2-overexpressing breast cancer. Cancer Immunol Immunother 57(2):271–280

    Article  PubMed  Google Scholar 

  44. Nanni P, Landuzzi L, Nicoletti G, De Giovanni C, Rossi I, Croci S et al (2004) Immunoprevention of mammary carcinoma in HER-2/neu transgenic mice is IFN-gamma and B cell dependent. J Immunol 173(4):2288–2296

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Research support from Susan G. Komen, KG081511 (to L. X. W), NIH RO1CA151496 (to L. X. W), and NIH RO1CA120893 (to G. E. P).

Conflict of interest

The authors have no conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Xin Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, LX., Plautz, G.E. T cells sensitized with breast tumor progenitor cell vaccine have therapeutic activity against spontaneous HER2/neu tumors. Breast Cancer Res Treat 134, 61–70 (2012). https://doi.org/10.1007/s10549-011-1912-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-011-1912-5

Keywords

Navigation