Skip to main content

Advertisement

Log in

Prognostic value of acquired uniparental disomy (aUPD) in primary breast cancer

  • Preclinical Study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Many studies have examined DNA copy number changes or gene expression profiling and their association with clinical outcomes in breast cancer. However, until now no study has investigated whether acquired uniparental disomy (aUPD), in which both chromosomes in a pair are derived from the same parent, may have an association with clinical outcome including initiation and recurrence of breast cancer. In this study, we used high-density SNP and expression microarrays data from primary tumors of 313 lymph node-negative breast cancer patients who had not received adjuvant systemic therapy to evaluate the association of aUPD with metastasis-free survival (MFS) and overall survival (OS). In 55.9% (175/313) of the tumors, we defined aUPD, which was most frequent in the regions at chr17q (30.3%) and chr13q (19.4%). In Cox univariate regression analysis including all patients, aUPD at four regions at chr17q, ranging in size from 2.9 to 4.0 Mb, were associated with a poor OS. Only aUPD at one region, region B, on chr17q was associated with a poor MFS. Similarly, aUPD at two regions, A and B, on chr13q, with sizes of 3.5 and 3.1 Mb, were associated with a poor OS, but not with MFS. In ER-subgroup analyses, regions B and D at 17q were associated with poor MFS and OS in ER-negative patients. Various differentially expressed genes within the identified aUPD regions at chr17q were associated with MFS and OS in all patients (PPM1D, C17orf71, and TRIM37) and/or in the ER-negative patients (PPM1D, PPM1E, and SLCA3R1). We thus conclude that aUPD is a frequent event in breast cancer and that aUPD at specific regions in the genome has implications in this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

aUPD:

Acquired uniparental disomy

OS:

Overall survival

MFS:

Metastasis-free survival

ER:

Estrogen receptor

SLC9A3R1 :

Na+/H+ exchanger regulatory factor 1 (also known as NHERF1)

PPM1D :

Protein phosphatases, Mg+/Mn2+ dependent, 1D

PPM1E :

Protein phosphatases, Mg+/Mn2+ dependent, 1E

References

  1. Jonsson G, Staaf J, Vallon-Christersson J, Ringner M, Holm K, Hegardt C, Gunnarsson H, Fagerholm R, Strand C, Agnarsson BA et al (2010) Genomic subtypes of breast cancer identified by array-comparative genomic hybridization display distinct molecular and clinical characteristics. Breast Cancer Res 12(3):R42

    Article  PubMed  Google Scholar 

  2. Loo LW, Grove DI, Williams EM, Neal CL, Cousens LA, Schubert EL, Holcomb IN, Massa HF, Glogovac J, Li CI et al (2004) Array comparative genomic hybridization analysis of genomic alterations in breast cancer subtypes. Cancer Res 64(23):8541–8549

    Article  PubMed  CAS  Google Scholar 

  3. Tuna M, Smid M, Zhu D, Martens JW, Amos CI (2010) Association between acquired uniparental disomy and homozygous mutations and HER2/ER/PR status in breast cancer. PLoS One 5(11):e15094

    Article  PubMed  CAS  Google Scholar 

  4. Chin SF, Teschendorff AE, Marioni JC, Wang Y, Barbosa-Morais NL, Thorne NP, Costa JL, Pinder SE, van de Wiel MA, Green AR et al (2007) High-resolution aCGH and expression profiling identifies a novel genomic subtype of ER negative breast cancer. Genome Biol 8(10):R215

    Article  PubMed  Google Scholar 

  5. O’Shea D, O’Riain C, Gupta M, Waters R, Yang Y, Wrench D, Gribben J, Rosenwald A, Ott G, Rimsza LM et al (2009) Regions of acquired uniparental disomy at diagnosis of follicular lymphoma are associated with both overall survival and risk of transformation. Blood 113(10):2298–2301

    Article  PubMed  Google Scholar 

  6. Kato M, Sanada M, Kato I, Sato Y, Takita J, Takeuchi K, Niwa A, Chen Y, Nakazaki K, Nomoto J et al (2009) Frequent inactivation of A20 in B-cell lymphomas. Nature 459(7247):712–716

    Article  PubMed  CAS  Google Scholar 

  7. Gondek LP, Tiu R, O’Keefe CL, Sekeres MA, Theil KS, Maciejewski JP (2008) Chromosomal lesions and uniparental disomy detected by SNP arrays in MDS, MDS/MPD, and MDS-derived AML. Blood 111(3):1534–1542

    Article  PubMed  CAS  Google Scholar 

  8. Fitzgibbon J, Smith LL, Raghavan M, Smith ML, Debernardi S, Skoulakis S, Lillington D, Lister TA, Young BD (2005) Association between acquired uniparental disomy and homozygous gene mutation in acute myeloid leukemias. Cancer Res 65(20):9152–9154

    Article  PubMed  CAS  Google Scholar 

  9. Zhang Y, Martens JW, Yu JX, Jiang J, Sieuwerts AM, Smid M, Klijn JG, Wang Y, Foekens JA (2009) Copy number alterations that predict metastatic capability of human breast cancer. Cancer Res 69(9):3795–3801

    Article  PubMed  CAS  Google Scholar 

  10. McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M, Clark GM (2006) REporting recommendations for tumor MARKer prognostic studies (REMARK). Breast Cancer Res Treat 100(2):229–235

    Article  PubMed  Google Scholar 

  11. Smid M, Hoes M, Sieuwerts AM, Sleijfer S, Zhang Y, Wang Y, Foekens JA, Martens JW (2010) Patterns and incidence of chromosomal instability and their prognostic relevance in breast cancer subtypes. Breast Cancer Res Treat. doi:10.1007/s10549-010-1026-5

  12. Wang Y, Klijn JG, Zhang Y, Sieuwerts AM, Look MP, Yang F, Talantov D, Timmermans M, Meijer-van Gelder ME, Yu J et al (2005) Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365(9460):671–679

    PubMed  CAS  Google Scholar 

  13. Yamamoto G, Nannya Y, Kato M, Sanada M, Levine RL, Kawamata N, Hangaishi A, Kurokawa M, Chiba S, Gilliland DG et al (2007) Highly sensitive method for genomewide detection of allelic composition in nonpaired, primary tumor specimens by use of affymetrix single-nucleotide-polymorphism genotyping microarrays. Am J Hum Genet 81(1):114–126

    Article  PubMed  CAS  Google Scholar 

  14. Nannya Y, Sanada M, Nakazaki K, Hosoya N, Wang L, Hangaishi A, Kurokawa M, Chiba S, Bailey DK, Kennedy GC et al (2005) A robust algorithm for copy number detection using high-density oligonucleotide single nucleotide polymorphism genotyping arrays. Cancer Res 65(14):6071–6079

    Article  PubMed  CAS  Google Scholar 

  15. Fiscella M, Zhang H, Fan S, Sakaguchi K, Shen S, Mercer WE, Vande Woude GF, O’Connor PM, Appella E (1997) Wip1, a novel human protein phosphatase that is induced in response to ionizing radiation in a p53-dependent manner. Proc Natl Acad Sci USA 94(12):6048–6053

    Article  PubMed  CAS  Google Scholar 

  16. Rauta J, Alarmo EL, Kauraniemi P, Karhu R, Kuukasjarvi T, Kallioniemi A (2006) The serine-threonine protein phosphatase PPM1D is frequently activated through amplification in aggressive primary breast tumours. Breast Cancer Res Treat 95(3):257–263

    Article  PubMed  CAS  Google Scholar 

  17. Lu X, Ma O, Nguyen TA, Jones SN, Oren M, Donehower LA (2007) The Wip1 phosphatase acts as a gatekeeper in the p53-Mdm2 autoregulatory loop. Cancer Cell 12(4):342–354

    Article  PubMed  CAS  Google Scholar 

  18. Lu X, Nguyen TA, Zhang X, Donehower LA (2008) The Wip1 phosphatase and Mdm2: cracking the “Wip” on p53 stability. Cell Cycle 7(2):164–168

    Article  PubMed  CAS  Google Scholar 

  19. Koh CG, Tan EJ, Manser E, Lim L (2002) The p21-activated kinase PAK is negatively regulated by POPX1 and POPX2, a pair of serine/threonine phosphatases of the PP2C family. Curr Biol 12(4):317–321

    Article  PubMed  CAS  Google Scholar 

  20. Molina JR, Morales FC, Hayashi Y, Aldape KD, Georgescu MM (2010) Loss of PTEN binding adapter protein NHERF1 from plasma membrane in glioblastoma contributes to PTEN inactivation. Cancer Res 70(17):6697–6703

    Article  PubMed  CAS  Google Scholar 

  21. Hall RA, Premont RT, Chow CW, Blitzer JT, Pitcher JA, Claing A, Stoffel RH, Barak LS, Shenolikar S, Weinman EJ et al (1998) The beta2-adrenergic receptor interacts with the Na+/H+-exchanger regulatory factor to control Na+/H+ exchange. Nature 392(6676):626–630

    Article  PubMed  CAS  Google Scholar 

  22. Maudsley S, Zamah AM, Rahman N, Blitzer JT, Luttrell LM, Lefkowitz RJ, Hall RA (2000) Platelet-derived growth factor receptor association with Na(+)/H(+) exchanger regulatory factor potentiates receptor activity. Mol Cell Biol 20(22):8352–8363

    Article  PubMed  CAS  Google Scholar 

  23. Shibata T, Chuma M, Kokubu A, Sakamoto M, Hirohashi S (2003) EBP50, a beta-catenin-associating protein, enhances Wnt signaling and is over-expressed in hepatocellular carcinoma. Hepatology 38(1):178–186

    Article  PubMed  CAS  Google Scholar 

  24. Wheeler DS, Barrick SR, Grubisha MJ, Brufsky AM, Friedman PA, Romero G (2011) Direct interaction between NHERF1 and frizzled regulates beta-catenin signaling. Oncogene 30(1):32–42

    Article  PubMed  CAS  Google Scholar 

  25. Hwang JI, Heo K, Shin KJ, Kim E, Yun C, Ryu SH, Shin HS, Suh PG (2000) Regulation of phospholipase C-beta 3 activity by Na+/H+ exchanger regulatory factor 2. J Biol Chem 275(22):16632–16637

    Article  PubMed  CAS  Google Scholar 

  26. Hall RA, Spurney RF, Premont RT, Rahman N, Blitzer JT, Pitcher JA, Lefkowitz RJ (1999) G protein-coupled receptor kinase 6A phosphorylates the Na(+)/H(+) exchanger regulatory factor via a PDZ domain-mediated interaction. J Biol Chem 274(34):24328–24334

    Article  PubMed  CAS  Google Scholar 

  27. Dai JL, Wang L, Sahin AA, Broemeling LD, Schutte M, Pan Y (2004) NHERF (Na+/H+ exchanger regulatory factor) gene mutations in human breast cancer. Oncogene 23(53):8681–8687

    Article  PubMed  Google Scholar 

  28. Pan Y, Wang L, Dai JL (2006) Suppression of breast cancer cell growth by Na+/H+ exchanger regulatory factor 1 (NHERF1). Breast Cancer Res 8(6):R63

    Article  PubMed  Google Scholar 

  29. Song J, Bai J, Yang W, Gabrielson EW, Chan DW, Zhang Z (2007) Expression and clinicopathological significance of oestrogen-responsive ezrin-radixin-moesin-binding phosphoprotein 50 in breast cancer. Histopathology 51(1):40–53

    Article  PubMed  CAS  Google Scholar 

  30. Stemmer-Rachamimov AO, Wiederhold T, Nielsen GP, James M, Pinney-Michalowski D, Roy JE, Cohen WA, Ramesh V, Louis DN (2001) NHE-RF, a merlin-interacting protein, is primarily expressed in luminal epithelia, proliferative endometrium, and estrogen receptor-positive breast carcinomas. Am J Pathol 158(1):57–62

    Article  PubMed  CAS  Google Scholar 

  31. Karn T, Ruckhaberle E, Hanker L, Muller V, Schmidt M, Solbach C, Gatje R, Gehrmann M, Holtrich U, Kaufmann M et al (2011) Gene expression profiling of luminal B breast cancers reveals NHERF1 as a new marker of endocrine resistance. Breast Cancer Res Treat. doi:10.1007/s10549-010-1333-x

  32. Al-Kuraya K, Schraml P, Torhorst J, Tapia C, Zaharieva B, Novotny H, Spichtin H, Maurer R, Mirlacher M, Kochli O et al (2004) Prognostic relevance of gene amplifications and coamplifications in breast cancer. Cancer Res 64(23):8534–8540

    Article  PubMed  CAS  Google Scholar 

  33. Rennstam K, Ahlstedt-Soini M, Baldetorp B, Bendahl PO, Borg A, Karhu R, Tanner M, Tirkkonen M, Isola J (2003) Patterns of chromosomal imbalances defines subgroups of breast cancer with distinct clinical features and prognosis. A study of 305 tumors by comparative genomic hybridization. Cancer Res 63(24):8861–8868

    PubMed  CAS  Google Scholar 

  34. Tanner MM, Tirkkonen M, Kallioniemi A, Holli K, Collins C, Kowbel D, Gray JW, Kallioniemi OP, Isola J (1995) Amplification of chromosomal region 20q13 in invasive breast cancer: prognostic implications. Clin Cancer Res 1(12):1455–1461

    PubMed  CAS  Google Scholar 

  35. Hu X, Stern HM, Ge L, O’Brien C, Haydu L, Honchell CD, Haverty PM, Peters BA, Wu TD, Amler LC et al (2009) Genetic alterations and oncogenic pathways associated with breast cancer subtypes. Mol Cancer Res 7(4):511–522

    Article  PubMed  CAS  Google Scholar 

  36. Chin K, DeVries S, Fridlyand J, Spellman PT, Roydasgupta R, Kuo WL, Lapuk A, Neve RM, Qian Z, Ryder T et al (2006) Genomic and transcriptional aberrations linked to breast cancer pathophysiologies. Cancer Cell 10(6):529–541

    Article  PubMed  CAS  Google Scholar 

  37. Carter SL, Eklund AC, Kohane IS, Harris LN, Szallasi Z (2006) A signature of chromosomal instability inferred from gene expression profiles predicts clinical outcome in multiple human cancers. Nat Genet 38(9):1043–1048

    Article  PubMed  CAS  Google Scholar 

  38. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA et al (2000) Molecular portraits of human breast tumours. Nature 406(6797):747–752

    Article  PubMed  CAS  Google Scholar 

  39. van de Vijver MJ, He YD, van’t Veer LJ, Dai H, Hart AA, Voskuil DW, Schreiber GJ, Peterse JL, Roberts C, Marton MJ et al (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347(25):1999–2009

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Casey Gates for excellent technical assistance and Diana Hacket for editing the manuscript.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Musaffe Tuna.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1. Frequency of aUPD in each chromosomal arm. (PPT 252 kb)

10549_2011_1579_MOESM2_ESM.ppt

Supplementary Fig. 2. Overall survival analysis of all 313 breast cancer patients as a function of aUPD regions at chr 17q and chr 13q. (a) 17qA, (b) 17qB, (c) 17qC, (d) 17qD, (e) 13qA, (f) 13qB. Patients at risk at various time points are indicated. (PPT 165 kb)

Supplementary material 3 (DOC 44 kb)

Supplementary material 4 (XLS 49 kb)

Supplementary material 5 (DOC 39 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tuna, M., Smid, M., Martens, J.W.M. et al. Prognostic value of acquired uniparental disomy (aUPD) in primary breast cancer. Breast Cancer Res Treat 132, 189–196 (2012). https://doi.org/10.1007/s10549-011-1579-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-011-1579-y

Keywords

Navigation