Skip to main content

Advertisement

Log in

Genomic profiling of mitochondrion-rich breast carcinoma: chromosomal changes may be relevant for mitochondria accumulation and tumour biology

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Oncocytic carcinomas are composed of mitochondrion-rich cells. Though recognised by the WHO classification as a histological special type of breast cancer, their status as a discrete pathological entity remains a matter of contention. Given that oncocytic tumours of other anatomical sites display distinct clinico-pathological and molecular features, we sought to define the molecular genetic features of mitochondrion-rich breast tumours and to compare them with a series of histological grade- and oestrogen receptor status-matched invasive ductal carcinomas of no special type. Seventeen mitochondrion-rich breast carcinomas, including nine bona fide oncocytic carcinomas, were profiled with antibodies against oestrogen, progesterone and androgen receptors, HER2, Ki67, GCDFP-15, chromogranin, epithelial membrane antigen, cytokeratin 7, cytokeratin 14, CD68 and mitochondria antigen. These tumours were microdissected and DNA extracted from samples with >70% of tumour cells. Fourteen cases yielded DNA of sufficient quality/quantity and were subjected to high-resolution microarray comparative genomic hybridisation analysis. The genomic profiles were compared to those of 28 grade- and oestrogen receptor status-matched invasive ductal carcinomas of no special type. Oncocytic and other mitochondrion-rich tumours did not differ significantly between themselves. As a group, mitochondrion-rich carcinomas were immunophenotypically heterogenous. Recurrent copy number changes were similar to those described in unselected breast cancers. However, unsupervised and supervised analysis identified a subset of mitochondrion-rich cancers, which often displayed gains of 11q13.1-q13.2 and 19p13. Changes in the latter two chromosomal regions have been shown to be associated with oncocytic tumours of the kidney and thyroid, respectively, and host several nuclear genes with specific mitochondrial function. Our results indicate that in a way akin to oncocytic tumours of other anatomical sites, at least a subset of mitochondrion-rich breast carcinomas may be underpinned by a distinct pattern of chromosomal changes potentially relevant for mitochondria accumulation and constitute a discrete molecular entity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Tallini G (1998) Oncocytic tumours. Virchows Arch 433(1):5–12

    Article  PubMed  CAS  Google Scholar 

  2. Costa MJ, Silverberg SG (1989) Oncocytic carcinoma of the male breast. Arch Pathol Lab Med 113(12):1396–1399

    PubMed  CAS  Google Scholar 

  3. Damiani S, Eusebi V, Losi L, D’Adda T, Rosai J (1998) Oncocytic carcinoma (malignant oncocytoma) of the breast. Am J Surg Pathol 22(2):221–230

    Article  PubMed  CAS  Google Scholar 

  4. Hamperl H (1972) Oncocyten und hyaline einschlusse in der menschlischen mamma. Virchows Arch 10:88–92

    CAS  Google Scholar 

  5. Ragazzi M, de Biase D, Betts CM, Farnedi A, Ramadan SS, Tallini G, Reis-Filho JS, Eusebi V (2010) Oncocytic carcinoma of the breast: frequency, morphology and follow up. Human Pathol 42(2):166–175

    Article  Google Scholar 

  6. Tavassoli FA, Devilee P (eds) (2003) Tumours of the breast. Pathology and genetics. Tumours of the breast and female genital organs. International Agency for Research of Cancer (IARC), Lyon

    Google Scholar 

  7. Damiani S, Dina R, Eusebi V (1999) Eosinophilic and granular cell tumors of the breast. Semin Diagn Pathol 16(2):117–125

    PubMed  CAS  Google Scholar 

  8. Gasparre G, Porcelli AM, Bonora E, Pennisi LF, Toller M, Iommarini L, Ghelli A, Moretti M, Betts CM, Martinelli GN, Ceroni AR, Curcio F, Carelli V, Rugolo M, Tallini G, Romeo G (2007) Disruptive mitochondrial DNA mutations in complex I subunits are markers of oncocytic phenotype in thyroid tumors. Proc Natl Acad Sci USA 104(21):9001–9006

    Article  PubMed  CAS  Google Scholar 

  9. Solis LM, Raso MG, Kalhor N, Behrens C, Wistuba II, Moran CA (2010) Primary oncocytic adenocarcinomas of the lung: a clinicopathologic, immunohistochemical, and molecular biologic analysis of 16 cases. Am J Clin Pathol 133(1):133–140

    Article  PubMed  Google Scholar 

  10. Sheu SY, Handke S, Brocker-Preuss M, Gorges R, Frey UH, Ensinger C, Ofner D, Farid NR, Siffert W, Schmid KW (2007) The C allele of the GNB3 C825T polymorphism of the G protein beta3-subunit is associated with an increased risk for the development of oncocytic thyroid tumours. J Pathol 211(1):60–66

    Article  PubMed  CAS  Google Scholar 

  11. Jhang JS, Narayan G, Murty VV, Mansukhani MM (2004) Renal oncocytomas with 11q13 rearrangements: cytogenetic, molecular, and immunohistochemical analysis of cyclin D1. Cancer Genet Cytogenet 149(2):114–119

    Article  PubMed  CAS  Google Scholar 

  12. Sukov WR, Ketterling RP, Lager DJ, Carlson AW, Sinnwell JP, Chow GK, Jenkins RB, Cheville JC (2009) CCND1 rearrangements and cyclin D1 overexpression in renal oncocytomas: frequency, clinicopathologic features, and utility in differentiation from chromophobe renal cell carcinoma. Hum Pathol 40(9):1296–1303

    Article  PubMed  CAS  Google Scholar 

  13. Gasparre G, Bonora E, Tallini G, Romeo G (2010) Molecular features of thyroid oncocytic tumors. Mol Cell Endocrinol 321(1):67–76

    Article  PubMed  CAS  Google Scholar 

  14. Bonora E, Porcelli AM, Gasparre G, Biondi A, Ghelli A, Carelli V, Baracca A, Tallini G, Martinuzzi A, Lenaz G, Rugolo M, Romeo G (2006) Defective oxidative phosphorylation in thyroid oncocytic carcinoma is associated with pathogenic mitochondrial DNA mutations affecting complexes I and III. Cancer Res 66(12):6087–6096

    Article  PubMed  CAS  Google Scholar 

  15. Canzian F, Amati P, Harach HR, Kraimps JL, Lesueur F, Barbier J, Levillain P, Romeo G, Bonneau D (1998) A gene predisposing to familial thyroid tumors with cell oxyphilia maps to chromosome 19p13.2. Am J Hum Genet 63(6):1743–1748

    Article  PubMed  CAS  Google Scholar 

  16. Lewis PD, Baxter P, Paul Griffiths A, Parry JM, Skibinski DO (2000) Detection of damage to the mitochondrial genome in the oncocytic cells of Warthin’s tumour. J Pathol 191(3):274–281

    Article  PubMed  CAS  Google Scholar 

  17. Lewis PD, Baxter PW, Griffiths AP, Parry JM, Skibinski DO (2000) Authors’ reply. Mitochondrial DNA damage and oncocytic neoplasia. J Pathol 192(4):562–563

    Article  PubMed  Google Scholar 

  18. Maximo V, Botelho T, Capela J, Soares P, Lima J, Taveira A, Amaro T, Barbosa AP, Preto A, Harach HR, Williams D, Sobrinho-Simoes M (2005) Somatic and germline mutation in GRIM-19, a dual function gene involved in mitochondrial metabolism and cell death, is linked to mitochondrion-rich (Hurthle cell) tumours of the thyroid. Br J Cancer 92(10):1892–1898

    Article  PubMed  CAS  Google Scholar 

  19. Maximo V, Sobrinho-Simoes M (2000) Mitochondrial DNA ‘common’ deletion in Hurthle cell lesions of the thyroid. J Pathol 192(4):561–562

    Article  PubMed  CAS  Google Scholar 

  20. Neuhaus C, Dijkhuizen T, van den Berg E, Storkel S, Stockle M, Mensch B, Huber C, Decker HJ (1997) Involvement of the chromosomal region 11q13 in renal oncocytoma: case report and literature review. Cancer Genet Cytogenet 94(2):95–98

    Article  PubMed  CAS  Google Scholar 

  21. Wada N, Duh QY, Miura D, Brunaud L, Wong MG, Clark OH (2002) Chromosomal aberrations by comparative genomic hybridization in hurthle cell thyroid carcinomas are associated with tumor recurrence. J Clin Endocrinol Metab 87(10):4595–4601

    Article  PubMed  CAS  Google Scholar 

  22. Ambrosini-Spaltro A, Salvi F, Betts CM, Frezza GP, Piemontese A, Del Prete P, Baldoni C, Foschini MP, Viale G (2006) Oncocytic modifications in rectal adenocarcinomas after radio and chemotherapy. Virchows Arch 448(4):442–448

    Article  PubMed  CAS  Google Scholar 

  23. Sobrinho-Simoes M, Maximo V, Castro IV, Fonseca E, Soares P, Garcia-Rostan G, Oliveira MC (2005) Hurthle (oncocytic) cell tumors of thyroid: etiopathogenesis, diagnosis and clinical significance. Int J Surg Pathol 13(1):29–35

    Article  PubMed  Google Scholar 

  24. Sinke RJ, Dijkhuizen T, Janssen B, Olde Weghuis D, Merkx G, van den Berg E, Schuuring E, Meloni AM, de Jong B, Geurts van Kessel A (1997) Fine mapping of the human renal oncocytoma-associated translocation (5;11)(q35;q13) breakpoint. Cancer Genet Cytogenet 96(2):95–101

    Article  PubMed  CAS  Google Scholar 

  25. Maximo V, Soares P, Lima J, Cameselle-Teijeiro J, Sobrinho-Simoes M (2002) Mitochondrial DNA somatic mutations (point mutations and large deletions) and mitochondrial DNA variants in human thyroid pathology: a study with emphasis on Hurthle cell tumors. Am J Pathol 160(5):1857–1865. doi:10.1016/S0002-9440(10)61132-7

    Article  PubMed  CAS  Google Scholar 

  26. Elston CW, Ellis IO (1991) Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology 19(5):403–410

    Article  PubMed  CAS  Google Scholar 

  27. Goldhirsch A, Glick JH, Gelber RD, Coates AS, Thurlimann B, Senn HJ (2005) Meeting highlights: international expert consensus on the primary therapy of early breast cancer 2005. Ann Oncol 16(10):1569–1583

    Article  PubMed  CAS  Google Scholar 

  28. Wolff AC, Hammond ME, Schwartz JN, Hagerty KL, Allred DC, Cote RJ, Dowsett M, Fitzgibbons PL, Hanna WM, Langer A, McShane LM, Paik S, Pegram MD, Perez EA, Press MF, Rhodes A, Sturgeon C, Taube SE, Tubbs R, Vance GH, van de Vijver M, Wheeler TM, Hayes DF (2007) American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. J Clin Oncol 25(1):118–145

    Article  PubMed  CAS  Google Scholar 

  29. Marchio C, Iravani M, Natrajan R, Lambros MB, Savage K, Tamber N, Fenwick K, Mackay A, Senetta R, Di Palma S, Schmitt FC, Bussolati G, Ellis LO, Ashworth A, Sapino A, Reis-Filho JS (2008) Genomic and immunophenotypical characterization of pure micropapillary carcinomas of the breast. J Pathol 215(4):398–410

    Article  PubMed  CAS  Google Scholar 

  30. Geyer FC, Weigelt B, Natrajan R, Lambros MB, de Biase D, Vatcheva R, Savage K, Mackay A, Ashworth A, Reis-Filho JS (2010) Molecular analysis reveals a genetic basis for the phenotypic diversity of metaplastic breast carcinomas. J Pathol 220(5):562–573

    Article  PubMed  CAS  Google Scholar 

  31. Loo LW, Grove DI, Williams EM, Neal CL, Cousens LA, Schubert EL, Holcomb IN, Massa HF, Glogovac J, Li CI, Malone KE, Daling JR, Delrow JJ, Trask BJ, Hsu L, Porter PL (2004) Array comparative genomic hybridization analysis of genomic alterations in breast cancer subtypes. Cancer Res 64(23):8541–8549

    Article  PubMed  CAS  Google Scholar 

  32. Melchor L, Honrado E, Huang J, Alvarez S, Naylor TL, Garcia MJ, Osorio A, Blesa D, Stratton MR, Weber BL, Cigudosa JC, Rahman N, Nathanson KL, Benitez J (2007) Estrogen receptor status could modulate the genomic pattern in familial and sporadic breast cancer. Clin Cancer Res 13(24):7305–7313

    Article  PubMed  CAS  Google Scholar 

  33. Natrajan R, Lambros MB, Geyer FC, Marchio C, Tan DS, Vatcheva R, Shiu KK, Hungermann D, Rodriguez-Pinilla SM, Palacios J, Ashworth A, Buerger H, Reis-Filho JS (2009) Loss of 16q in high grade breast cancer is associated with estrogen receptor status: evidence for progression in tumors with a luminal phenotype? Genes Chromosomes Cancer 48(4):351–365

    Article  PubMed  CAS  Google Scholar 

  34. Natrajan R, Lambros MB, Rodriguez-Pinilla SM, Moreno-Bueno G, Tan DS, Marchio C, Vatcheva R, Rayter S, Mahler-Araujo B, Fulford LG, Hungermann D, Mackay A, Grigoriadis A, Fenwick K, Tamber N, Hardisson D, Tutt A, Palacios J, Lord CJ, Buerger H, Ashworth A, Reis-Filho JS (2009) Tiling path genomic profiling of grade 3 invasive ductal breast cancers. Clin Cancer Res 15(8):2711–2722

    Article  PubMed  CAS  Google Scholar 

  35. Geyer FC, Lopez-Garcia MA, Lambros MB, Reis-Filho JS (2009) Genetic characterization of breast cancer and implications for clinical management. J Cell Mol Med 13(10):4090–4103

    Article  PubMed  CAS  Google Scholar 

  36. Weigelt B, Baehner FL, Reis-Filho JS (2010) The contribution of gene expression profiling to breast cancer classification, prognostication and prediction: a retrospective of the last decade. J Pathol 220(2):263–280

    PubMed  CAS  Google Scholar 

  37. Marchio C, Iravani M, Natrajan R, Lambros MB, Geyer FC, Savage K, Parry S, Tamber N, Fenwick K, Mackay A, Schmitt FC, Bussolati G, Ellis I, Ashworth A, Sapino A, Reis-Filho JS (2009) Mixed micropapillary-ductal carcinomas of the breast: a genomic and immunohistochemical analysis of morphologically distinct components. J Pathol 218(3):301–315

    Article  PubMed  CAS  Google Scholar 

  38. Coe BP, Ylstra B, Carvalho B, Meijer GA, Macaulay C, Lam WL (2007) Resolving the resolution of array CGH. Genomics 89(5):647–653

    Article  PubMed  CAS  Google Scholar 

  39. Gunnarsson R, Staaf J, Jansson M, Ottesen AM, Goransson H, Liljedahl U, Ralfkiaer U, Mansouri M, Buhl AM, Smedby KE, Hjalgrim H, Syvanen AC, Borg A, Isaksson A, Jurlander J, Juliusson G, Rosenquist R (2008) Screening for copy-number alterations and loss of heterozygosity in chronic lymphocytic leukemia—a comparative study of four differently designed, high resolution microarray platforms. Genes Chromosomes Cancer 47(8):697–711

    Article  PubMed  CAS  Google Scholar 

  40. Tan DS, Lambros MB, Natrajan R, Reis-Filho JS (2007) Getting it right: designing microarray (and not ‘microawry’) comparative genomic hybridization studies for cancer research. Lab Invest 87(8):737–754

    Article  PubMed  CAS  Google Scholar 

  41. Mackay A, Tamber N, Fenwick K, Iravani M, Grigoriadis A, Dexter T, Lord CJ, Reis-Filho JS, Ashworth A (2009) A high-resolution integrated analysis of genetic and expression profiles of breast cancer cell lines. Breast Cancer Res Treat 118(3):481–498

    Article  PubMed  CAS  Google Scholar 

  42. Natrajan R, Weigelt B, Mackay A, Geyer FC, Grigoriadis A, Tan DS, Jones C, Lord CJ, Vatcheva R, Rodriguez-Pinilla SM, Palacios J, Ashworth A, Reis-Filho JS (2010) An integrative genomic and transcriptomic analysis reveals molecular pathways and networks regulated by copy number aberrations in basal-like, HER2 and luminal cancers. Breast Cancer Res Treat 121(3):575–589

    Article  PubMed  CAS  Google Scholar 

  43. Arriola E, Marchio C, Tan DS, Drury SC, Lambros MB, Natrajan R, Rodriguez-Pinilla SM, Mackay A, Tamber N, Fenwick K, Jones C, Dowsett M, Ashworth A, Reis-Filho JS (2008) Genomic analysis of the HER2/TOP2A amplicon in breast cancer and breast cancer cell lines. Lab Invest 88(5):491–503

    Article  PubMed  CAS  Google Scholar 

  44. Simpson PT, Reis-Filho JS, Lambros MB, Jones C, Steele D, Mackay A, Iravani M, Fenwick K, Dexter T, Jones A, Reid L, Da Silva L, Shin SJ, Hardisson D, Ashworth A, Schmitt FC, Palacios J, Lakhani SR (2008) Molecular profiling pleomorphic lobular carcinomas of the breast: evidence for a common molecular genetic pathway with classic lobular carcinomas. J Pathol 215(3):231–244

    Article  PubMed  CAS  Google Scholar 

  45. Reis-Filho JS, Drury S, Lambros MB, Marchio C, Johnson N, Natrajan R, Salter J, Levey P, Fletcher O, Peto J, Ashworth A, Dowsett M (2008) ESR1 gene amplification in breast cancer: a common phenomenon? Nat Genet 40(7):809–810; author reply 810–802

    Google Scholar 

  46. Carey LA, Dees EC, Sawyer L, Gatti L, Moore DT, Collichio F, Ollila DW, Sartor CI, Graham ML, Perou CM (2007) The triple negative paradox: primary tumor chemosensitivity of breast cancer subtypes. Clin Cancer Res 13(8):2329–2334

    Article  PubMed  CAS  Google Scholar 

  47. Hicks J, Krasnitz A, Lakshmi B, Navin NE, Riggs M, Leibu E, Esposito D, Alexander J, Troge J, Grubor V, Yoon S, Wigler M, Ye K, Borresen-Dale AL, Naume B, Schlicting E, Norton L, Hagerstrom T, Skoog L, Auer G, Maner S, Lundin P, Zetterberg A (2006) Novel patterns of genome rearrangement and their association with survival in breast cancer. Genome Res 16(12):1465–1479

    Article  PubMed  CAS  Google Scholar 

  48. Reis-Filho JS, Savage K, Lambros MB, James M, Steele D, Jones RL, Dowsett M (2006) Cyclin D1 protein overexpression and CCND1 amplification in breast carcinomas: an immunohistochemical and chromogenic in situ hybridisation analysis. Mod Pathol 19(7):999–1009

    Article  PubMed  CAS  Google Scholar 

  49. Elsheikh S, Green AR, Aleskandarany MA, Grainge M, Paish CE, Lambros MB, Reis-Filho JS, Ellis IO (2008) CCND1 amplification and cyclin D1 expression in breast cancer and their relation with proteomic subgroups and patient outcome. Breast Cancer Res Treat 109(2):325–335

    Article  PubMed  CAS  Google Scholar 

  50. Sahin E, Colla S, Liesa M, Moslehi J, Muller FL, Guo M, Cooper M, Kotton D, Fabian AJ, Walkey C, Maser RS, Tonon G, Foerster F, Xiong R, Wang YA, Shukla SA, Jaskelioff M, Martin ES, Heffernan TP, Protopopov A, Ivanova E, Mahoney JE, Kost-Alimova M, Perry SR, Bronson R, Liao R, Mulligan R, Shirihai OS, Chin L, DePinho RA (2011) Telomere dysfunction induces metabolic and mitochondrial compromise. Nature 470(7334):359–365. doi:10.1038/nature09787

    Article  PubMed  CAS  Google Scholar 

  51. Burnichon N, Briere JJ, Libe R, Vescovo L, Riviere J, Tissier F, Jouanno E, Jeunemaitre X, Benit P, Tzagoloff A, Rustin P, Bertherat J, Favier J, Gimenez-Roqueplo AP (2010) SDHA is a tumor suppressor gene causing paraganglioma. Hum Mol Genet 19(15):3011–3020. doi:10.1093/hmg/ddq206

    Article  PubMed  CAS  Google Scholar 

  52. Saada A, Shaag A, Mandel H, Nevo Y, Eriksson S, Elpeleg O (2001) Mutant mitochondrial thymidine kinase in mitochondrial DNA depletion myopathy. Nat Genet 29(3):342–344. doi:10.1038/ng751

    Article  PubMed  CAS  Google Scholar 

  53. Karihtala P, Mantyniemi A, Kang SW, Kinnula VL, Soini Y (2003) Peroxiredoxins in breast carcinoma. Clin Cancer Res 9(9):3418–3424

    PubMed  CAS  Google Scholar 

  54. Shiota M, Izumi H, Miyamoto N, Onitsuka T, Kashiwagi E, Kidani A, Hirano G, Takahashi M, Ono M, Kuwano M, Naito S, Sasaguri Y, Kohno K (2008) Ets regulates peroxiredoxin1 and 5 expressions through their interaction with the high-mobility group protein B1. Cancer Sci 99(10):1950–1959

    PubMed  CAS  Google Scholar 

  55. Demasi AP, Furuse C, Altemani A, Junqueira JL, Oliveira PR, Araujo VC (2009) Peroxiredoxin I is overexpressed in oncocytic lesions of salivary glands. J Oral Pathol Med 38(6):514–517

    Article  PubMed  CAS  Google Scholar 

  56. Porcelli AM, Ghelli A, Ceccarelli C, Lang M, Cenacchi G, Capristo M, Pennisi LF, Morra I, Ciccarelli E, Melcarne A, Bartoletti-Stella A, Salfi N, Tallini G, Martinuzzi A, Carelli V, Attimonelli M, Rugolo M, Romeo G, Gasparre G (2010) The genetic and metabolic signature of oncocytic transformation implicates HIF1alpha destabilization. Hum Mol Genet 19(6):1019–1032

    Article  PubMed  CAS  Google Scholar 

  57. Guerra E, Trerotola M, Dell’ Arciprete R, Bonasera V, Palombo B, El-Sewedy T, Ciccimarra T, Crescenzi C, Lorenzini F, Rossi C, Vacca G, Lattanzio R, Piantelli M, Alberti S (2008) A bicistronic CYCLIN D1-TROP2 mRNA chimera demonstrates a novel oncogenic mechanism in human cancer. Cancer Res 68(19):8113–8121. doi:10.1158/0008-5472.CAN-07-6135

    Article  PubMed  CAS  Google Scholar 

  58. Gasparre G, Romeo G, Rugolo M, Porcelli AM (2010) Learning from oncocytic tumors: why choose inefficient mitochondria? Biochim Biophys Acta. doi:10.1016/j.bbabio.2010.08.006

Download references

Acknowledgments

This study was funded by the Breakthrough Breast Cancer Research Centre and by the University of Bologna School of Medicine-Dipartimento di Ematologia e Scienze Oncologiche “L. e A. Seràgnoli”; the study was also supported in part by a research AIRC regional grant (code 1145) to GT and by Italian Government research grants to GT (Ricerca Fondamentale Orientata, number 20074zw8la) and GG (FIRB-’Futuro in Ricerca’ J31J10000040001); DdB was the recipient of a fellowship from the Centro Interdipartimentale di Ricerca sul Cancro “G. Prodi” (CIRC), University of Bologna.

Conflict of interest

The authors have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jorge S. Reis-Filho or Giovanni Tallini.

Additional information

Felipe C. Geyer and Dario de Biase contributed equally to this work. Jorge S. Reis-Filho and Giovanni Tallini contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geyer, F.C., de Biase, D., Lambros, M.B.K. et al. Genomic profiling of mitochondrion-rich breast carcinoma: chromosomal changes may be relevant for mitochondria accumulation and tumour biology. Breast Cancer Res Treat 132, 15–28 (2012). https://doi.org/10.1007/s10549-011-1504-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-011-1504-4

Keywords

Navigation