Skip to main content
Log in

Meta-analysis of two ERCC2 (XPD) polymorphisms, Asp312Asn and Lys751Gln, in breast cancer

  • Epidemiology
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

The excision repair cross-complementing group 2 gene (ERCC2) plays a key role in DNA repair. Several polymorphisms in the ERCC2 gene have been described, including the commonly occurring Lys751Gln and Asp312Asn polymorphisms. Studies investigating the association of these polymorphisms with breast cancer risk produced controversial results. To evaluate these associations presented in diverse populations, we have conducted a meta-analysis based on 40 studies from 33 publications in PubMed which included analyses of Lys751Gln (14,545 cases, 15,352 controls) and Asp312Asn polymorphisms (16,254 cases, 14,006 controls). Overall findings of both polymorphisms have implicated null effects (OR = 1.01–1.03) when the analyses were limited to the statistically powerful (≥80%) studies. Although modestly increased statistically significant breast cancer risk was detected in the underpowered studies (≤80%), removal of outliers resulted in null associations. Ethnic stratification showed non-significant and relatively null associations for both polymorphisms with breast cancer risk for the overall Caucasians as well as North American and the European sub-populations. Although statistically increased and decreased risks were observed for the homogenous populations of African-Americans (Lys751Gln, OR 1.25, 95% CI 1.03–1.53, P = 0.03) and Asians (Asp312Asn, ORs: 0.53–0.55, P values: 0.02–0.03), respectively, this may be the result of small sample size. Analyses of the homogeneous adduct studies, with relatively large sample size, exhibited increased risk for Lys751Gln (OR 1.20, 95% CI (1.02–1.41), P = 0.03) and Asp312Asn (OR 1.17 95% CI 1.02–1.34, P = 0.03) under the dominant genetic model. In conclusion, our results suggest null associations of both polymorphisms in the overall and the Caucasian subgroups, although some effects can be suggested for relatively smaller minority studies. Increased risk effect was more visible when the adduct studies are considered, suggesting the role of these polymorphisms in the presence of exposure to DNA damaging agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Coin F, Marinoni JC, Rodolfo C, Fribourg S, Pedrini AM, Egly JM (1998) Mutations in the XPD helicase gene result in XP and TTD phenotypes, preventing interaction between XPD and the p44 subunit of TFIIH. Nat Genet 20(2):184–188

    Article  CAS  PubMed  Google Scholar 

  2. Laine JP, Mocquet V, Bonfanti M, Braun C, Egly JM, Brousset P (2007) Common XPD (ERCC2) polymorphisms have no measurable effect on nucleotide excision repair and basal transcription. DNA Repair (Amst) 6(9):1264–1270

    Article  CAS  Google Scholar 

  3. Shen MR, Jones IM, Mohrenweiser H (1998) Nonconservative amino acid substitution variants exist at polymorphic frequency in DNA repair genes in healthy humans. Cancer Res 58(4):604–608

    CAS  PubMed  Google Scholar 

  4. Xi T, Jones IM, Mohrenweiser HW (2004) Many amino acid substitution variants identified in DNA repair genes during human population screenings are predicted to impact protein function. Genomics 83(6):970–979

    Article  CAS  PubMed  Google Scholar 

  5. Clarkson SG, Wood RD (2005) Polymorphisms in the human XPD (ERCC2) gene, DNA repair capacity and cancer susceptibility: an appraisal. DNA Repair (Amst) 4(10):1068–1074

    Article  CAS  Google Scholar 

  6. Bienstock RJ, Skorvaga M, Mandavilli BS, Van Houten B (2003) Structural and functional characterization of the human DNA repair helicase XPD by comparative molecular modeling and site-directed mutagenesis of the bacterial repair protein UvrB. J Biol Chem 278(7):5309–5316

    Article  CAS  PubMed  Google Scholar 

  7. Dubaele S, Proietti De Santis L, Bienstock RJ, Keriel A, Stefanini M, Van Houten B, Egly JM (2003) Basal transcription defect discriminates between xeroderma pigmentosum and trichothiodystrophy in XPD patients. Mol Cell 11(6):1635–1646

    Article  CAS  PubMed  Google Scholar 

  8. Giglia-Mari G, Coin F, Ranish JA, Hoogstraten D, Theil A, Wijgers N, Jaspers NG, Raams A, Argentini M, van der Spek PJ et al (2004) A new, tenth subunit of TFIIH is responsible for the DNA repair syndrome trichothiodystrophy group A. Nat Genet 36(7):714–719

    Article  CAS  PubMed  Google Scholar 

  9. Hemminki K, Xu G, Angelini S, Snellman E, Jansen CT, Lambert B, Hou SM (2001) XPD exon 10 and 23 polymorphisms and DNA repair in human skin in situ. Carcinogenesis 22(8):1185–1188

    Article  CAS  PubMed  Google Scholar 

  10. Au WW, Salama SA, Sierra-Torres CH (2003) Functional characterization of polymorphisms in DNA repair genes using cytogenetic challenge assays. Environ Health Perspect 111(15):1843–1850

    CAS  PubMed  Google Scholar 

  11. Qiao Y, Spitz MR, Shen H, Guo Z, Shete S, Hedayati M, Grossman L, Mohrenweiser H, Wei Q (2002) Modulation of repair of ultraviolet damage in the host-cell reactivation assay by polymorphic XPC and XPD/ERCC2 genotypes. Carcinogenesis 23(2):295–299

    Article  CAS  PubMed  Google Scholar 

  12. Lunn RM, Helzlsouer KJ, Parshad R, Umbach DM, Harris EL, Sanford KK, Bell DA (2000) XPD polymorphisms: effects on DNA repair proficiency. Carcinogenesis 21(4):551–555

    Article  CAS  PubMed  Google Scholar 

  13. Seker H, Butkiewicz D, Bowman ED, Rusin M, Hedayati M, Grossman L, Harris CC (2001) Functional significance of XPD polymorphic variants: attenuated apoptosis in human lymphoblastoid cells with the XPD 312 Asp/Asp genotype. Cancer Res 61(20):7430–7434

    CAS  PubMed  Google Scholar 

  14. Wolfe KJ, Wickliffe JK, Hill CE, Paolini M, Ammenheuser MM, Abdel-Rahman SZ (2007) Single nucleotide polymorphisms of the DNA repair gene XPD/ERCC2 alter mRNA expression. Pharmacogenet Genomics 17(11):897–905

    Article  CAS  PubMed  Google Scholar 

  15. Thakkinstian A, McElduff P, D’Este C, Duffy D, Attia J (2005) A method for meta-analysis of molecular association studies. Stat Med 24(9):1291–1306

    Article  PubMed  Google Scholar 

  16. Dufloth RM, Arruda A, Heinrich JK, Schmitt F, Zeferino LC (2008) The investigation of DNA repair polymorphisms with histopathological characteristics and hormone receptors in a group of Brazilian women with breast cancer. Genet Mol Res 7(3):574–582

    Article  CAS  PubMed  Google Scholar 

  17. Forsti A, Angelini S, Festa F, Sanyal S, Zhang Z, Grzybowska E, Pamula J, Pekala W, Zientek H, Hemminki K et al (2004) Single nucleotide polymorphisms in breast cancer. Oncol Rep 11(4):917–922

    PubMed  Google Scholar 

  18. Mechanic LE, Millikan RC, Player J, de Cotret AR, Winkel S, Worley K, Heard K, Heard K, Tse CK, Keku T (2006) Polymorphisms in nucleotide excision repair genes, smoking and breast cancer in African Americans and whites: a population-based case-control study. Carcinogenesis 27(7):1377–1385

    Article  CAS  PubMed  Google Scholar 

  19. Smith TR, Levine EA, Freimanis RI, Akman SA, Allen GO, Hoang KN, Liu-Mares W, Hu JJ (2008) Polygenic model of DNA repair genetic polymorphisms in human breast cancer risk. Carcinogenesis 29(11):2132–2138

    Article  CAS  PubMed  Google Scholar 

  20. Kuschel B, Chenevix-Trench G, Spurdle AB, Chen X, Hopper JL, Giles GG, McCredie M, Chang-Claude J, Gregory CS, Day NE et al (2005) Common polymorphisms in ERCC2 (Xeroderma pigmentosum D) are not associated with breast cancer risk. Cancer Epidemiol Biomarkers Prev 14(7):1828–1831

    Article  CAS  PubMed  Google Scholar 

  21. Debniak T, Scott RJ, Huzarski T, Byrski T, Masojc B, van de Wetering T, Serrano-Fernandez P, Gorski B, Cybulski C, Gronwald J et al (2006) XPD common variants and their association with melanoma and breast cancer risk. Breast Cancer Res Treat 98(2):209–215

    Article  CAS  PubMed  Google Scholar 

  22. Syamala VS, Syamala V, Sreedharan H, Raveendran PB, Kuttan R, Ankathil R (2009) Contribution of XPD (Lys751Gln) and XRCC1 (Arg399Gln) polymorphisms in familial and sporadic breast cancer predisposition and survival: an Indian report. Pathol Oncol Res 15(3):389–397

    Article  CAS  PubMed  Google Scholar 

  23. Breast Cancer Association Consortium (2006) Commonly studied single-nucleotide polymorphisms and breast cancer: results from the Breast Cancer Association Consortium. J Natl Cancer Inst 98(19):1382–1396

    Article  Google Scholar 

  24. Bernard-Gallon D, Bosviel R, Delort L, Fontana L, Chamoux A, Rabiau N, Kwiatkowski F, Chalabi N, Satih S, Bignon YJ (2008) DNA repair gene ERCC2 polymorphisms and associations with breast and ovarian cancer risk. Mol Cancer 7:36

    Article  PubMed  Google Scholar 

  25. Costa S, Pinto D, Pereira D, Rodrigues H, Cameselle-Teijeiro J, Medeiros R, Schmitt F (2007) DNA repair polymorphisms might contribute differentially on familial and sporadic breast cancer susceptibility: a study on a Portuguese population. Breast Cancer Res Treat 103(2):209–217

    Article  CAS  PubMed  Google Scholar 

  26. Justenhoven C, Hamann U, Pesch B, Harth V, Rabstein S, Baisch C, Vollmert C, Illig T, Ko YD, Bruning T et al (2004) ERCC2 genotypes and a corresponding haplotype are linked with breast cancer risk in a German population. Cancer Epidemiol Biomarkers Prev 13(12):2059–2064

    CAS  PubMed  Google Scholar 

  27. Kipikasova L, Wolaschka T, Bohus P, Baumohlova H, Bober J, Blazejova J, Mirossay L, Sarissky M, Mirossay A, Cizmarikova M et al (2008) Polymorphisms of the XRCC1 and XPD genes and breast cancer risk: a case-control study. Pathol Oncol Res 14(2):131–135

    Article  CAS  PubMed  Google Scholar 

  28. Metsola K, Kataja V, Sillanpaa P, Siivola P, Heikinheimo L, Eskelinen M, Kosma VM, Uusitupa M, Hirvonen A (2005) XRCC1 and XPD genetic polymorphisms, smoking and breast cancer risk in a Finnish case-control study. Breast Cancer Res 7(6):R987–R997

    Article  CAS  PubMed  Google Scholar 

  29. Ribas G, Gonzalez-Neira A, Salas A, Milne RL, Vega A, Carracedo B, Gonzalez E, Barroso E, Fernandez LP, Yankilevich P et al (2006) Evaluating HapMap SNP data transferability in a large-scale genotyping project involving 175 cancer-associated genes. Hum Genet 118(6):669–679

    Article  CAS  PubMed  Google Scholar 

  30. Romanowicz-Makowska H, Sobczuk A, Smolarz B, Fiks T, Kulig A (2007) XPD Lys751Gln polymorphism analysis in women with sporadic breast cancer. Pol J Pathol 58(4):245–249

    CAS  PubMed  Google Scholar 

  31. Synowiec E, Stefanska J, Morawiec Z, Blasiak J, Wozniak K (2008) Association between DNA damage, DNA repair genes variability and clinical characteristics in breast cancer patients. Mutat Res 648(1–2):65–72

    CAS  PubMed  Google Scholar 

  32. Jakubowska A, Gronwald J, Menkiszak J, Górski B, Huzarski T, Byrski T, Tołoczko-Grabarek A, Gilbert M, Edler L, Zapatka M, Eils R, Lubiński J, Scott RJ, Hamann U (2010) BRCA1-associated breast and ovarian cancer risks in Poland: no association with commonly studied polymorphisms. Breast Cancer Res Treat 119(1):201–211

    Article  PubMed  Google Scholar 

  33. Brewster AM, Jorgensen TJ, Ruczinski I, Huang HY, Hoffman S, Thuita L, Newschaffer C, Lunn RM, Bell D, Helzlsouer KJ (2006) Polymorphisms of the DNA repair genes XPD (Lys751Gln) and XRCC1 (Arg399Gln and Arg194Trp): relationship to breast cancer risk and familial predisposition to breast cancer. Breast Cancer Res Treat 95(1):73–80

    Article  CAS  PubMed  Google Scholar 

  34. Crew KD, Gammon MD, Terry MB, Zhang FF, Zablotska LB, Agrawal M, Shen J, Long CM, Eng SM, Sagiv SK et al (2007) Polymorphisms in nucleotide excision repair genes, polycyclic aromatic hydrocarbon-DNA adducts, and breast cancer risk. Cancer Epidemiol Biomarkers Prev 16(10):2033–2041

    Article  CAS  PubMed  Google Scholar 

  35. Faraglia B, Chen SY, Gammon MD, Zhang Y, Teitelbaum SL, Neugut AI, Ahsan H, Garbowski GC, Hibshoosh H, Lin D et al (2003) Evaluation of 4-aminobiphenyl-DNA adducts in human breast cancer: the influence of tobacco smoke. Carcinogenesis 24(4):719–725

    Article  CAS  PubMed  Google Scholar 

  36. Jorgensen TJ, Visvanathan K, Ruczinski I, Thuita L, Hoffman S, Helzlsouer KJ (2007) Breast cancer risk is not associated with polymorphic forms of xeroderma pigmentosum genes in a cohort of women from Washington County, Maryland. Breast Cancer Res Treat 101(1):65–71

    Article  CAS  PubMed  Google Scholar 

  37. Onay VU, Briollais L, Knight JA, Shi E, Wang Y, Wells S, Li H, Rajendram I, Andrulis IL, Ozcelik H (2006) SNP-SNP interactions in breast cancer susceptibility. BMC Cancer 6:114

    Article  PubMed  Google Scholar 

  38. Rajaraman P, Bhatti P, Doody MM, Simon SL, Weinstock RM, Linet MS, Rosenstein M, Stovall M, Alexander BH, Preston DL et al (2008) Nucleotide excision repair polymorphisms may modify ionizing radiation-related breast cancer risk in US radiologic technologists. Int J Cancer 123(11):2713–2716

    Article  CAS  PubMed  Google Scholar 

  39. Shen J, Desai M, Agrawal M, Kennedy DO, Senie RT, Santella RM, Terry MB (2006) Polymorphisms in nucleotide excision repair genes and DNA repair capacity phenotype in sisters discordant for breast cancer. Cancer Epidemiol Biomarkers Prev 15(9):1614–1619

    Article  CAS  PubMed  Google Scholar 

  40. Shi Q, Wang LE, Bondy ML, Brewster A, Singletary SE, Wei Q (2004) Reduced DNA repair of benzo[a]pyrene diol epoxide-induced adducts and common XPD polymorphisms in breast cancer patients. Carcinogenesis 25(9):1695–1700

    Article  CAS  PubMed  Google Scholar 

  41. Shore RE, Zeleniuch-Jacquotte A, Currie D, Mohrenweiser H, Afanasyeva Y, Koenig KL, Arslan AA, Toniolo P, Wirgin I (2008) Polymorphisms in XPC and ERCC2 genes, smoking and breast cancer risk. Int J Cancer 122(9):2101–2105

    Article  CAS  PubMed  Google Scholar 

  42. Tang D, Cho S, Rundle A, Chen S, Phillips D, Zhou J, Hsu Y, Schnabel F, Estabrook A, Perera FP (2002) Polymorphisms in the DNA repair enzyme XPD are associated with increased levels of PAH-DNA adducts in a case-control study of breast cancer. Breast Cancer Res Treat 75(2):159–166

    Article  CAS  PubMed  Google Scholar 

  43. Terry MB, Gammon MD, Zhang FF, Eng SM, Sagiv SK, Paykin AB, Wang Q, Hayes S, Teitelbaum SL, Neugut AI et al (2004) Polymorphism in the DNA repair gene XPD, polycyclic aromatic hydrocarbon-DNA adducts, cigarette smoking, and breast cancer risk. Cancer Epidemiol Biomarkers Prev 13(12):2053–2058

    CAS  PubMed  Google Scholar 

  44. Dufloth RM, Costa S, Schmitt F, Zeferino LC (2005) DNA repair gene polymorphisms and susceptibility to familial breast cancer in a group of patients from Campinas, Brazil. Genet Mol Res 4(4):771–782

    CAS  PubMed  Google Scholar 

  45. Hsu MS, Yu JC, Wang HW, Chen ST, Hsiung CN, Ding SL, Wu PE, Shen CY, Cheng CW (2010) Synergistic effects of polymorphisms in dna repair genes and endogenous estrogen exposure on female breast cancer risk. Ann Surg Oncol 17(3):760–771

    Article  Google Scholar 

  46. Lee SA, Lee KM, Park WY, Kim B, Nam J, Yoo KY, Noh DY, Ahn SH, Hirvonen A, Kang D (2005) Obesity and genetic polymorphism of ERCC2 and ERCC4 as modifiers of risk of breast cancer. Exp Mol Med 37(2):86–90

    CAS  PubMed  Google Scholar 

  47. Li J, Jin W, Chen Y, Di G, Wu J, Shao ZM (2008) Genetic polymorphisms in the DNA repair enzyme ERCC2 and breast tumour risk in a Chinese population. J Int Med Res 36(3):479–488

    CAS  PubMed  Google Scholar 

  48. Zhang L, Zhang Z, Yan W (2005) Single nucleotide polymorphisms for DNA repair genes in breast cancer patients. Clin Chim Acta 359(1–2):150–155

    Article  CAS  PubMed  Google Scholar 

  49. Mantel N, Haenszel W (1959) Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst 22(4):719–748

    CAS  PubMed  Google Scholar 

  50. DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7(3):177–188

    Article  CAS  PubMed  Google Scholar 

  51. Lau J, Ioannidis JP, Schmid CH (1997) Quantitative synthesis in systematic reviews. Ann Intern Med 127(9):820–826

    CAS  PubMed  Google Scholar 

  52. Berman NG, Parker RA (2002) Meta-analysis: neither quick nor easy. BMC Med Res Methodol 2:10

    Article  PubMed  Google Scholar 

  53. Higgins JP, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21(11):1539–1558

    Article  PubMed  Google Scholar 

  54. Galbraith RF (1988) A note on graphical presentation of estimated odds ratios from several clinical trials. Stat Med 7(8):889–894

    Article  CAS  PubMed  Google Scholar 

  55. Pabalan N, Bapat B, Sung L, Jarjanazi H, Francisco-Pabalan O, Ozcelik H (2008) Cyclin D1 Pro241Pro (CCND1–G870A) polymorphism is associated with increased cancer risk in human populations: a meta-analysis. Cancer Epidemiol Biomarkers Prev 17(10):2773–2781

    Article  CAS  PubMed  Google Scholar 

  56. Zafarmand MH, van der Schouw YT, Grobbee DE, de Leeuw PW, Bots ML (2008) The M235T polymorphism in the AGT gene and CHD risk: evidence of a Hardy-Weinberg equilibrium violation and publication bias in a meta-analysis. PLoS ONE 3(6):e2533

    Article  PubMed  Google Scholar 

  57. Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ Clinical researched 315(7109):629–634

    CAS  Google Scholar 

  58. Nexo BA, Vogel U, Olsen A, Ketelsen T, Bukowy Z, Thomsen BL, Wallin H, Overvad K, Tjonneland A (2003) A specific haplotype of single nucleotide polymorphisms on chromosome 19q13.2–3 encompassing the gene RAI is indicative of post-menopausal breast cancer before age 55. Carcinogenesis 24(5):899–904

    Article  CAS  PubMed  Google Scholar 

  59. Wang F, Chang D, Hu FL, Sui H, Han B, Li DD, Zhao YS (2008) DNA repair gene XPD polymorphisms and cancer risk: a meta-analysis based on 56 case-control studies. Cancer Epidemiol Biomarkers Prev 17(3):507–517

    Article  CAS  PubMed  Google Scholar 

  60. King CR, Yu J, Freimuth RR, McLeod HL, Marsh S (2005) Interethnic variability of ERCC2 polymorphisms. Pharmacogenomics J 5(1):54–59

    Article  CAS  PubMed  Google Scholar 

  61. Brody JG, Rudel RA (2003) Environmental pollutants and breast cancer. Environ Health Perspect 111(8):1007–1019

    CAS  PubMed  Google Scholar 

  62. Gorlewska-Roberts K, Green B, Fares M, Ambrosone CB, Kadlubar FF (2002) Carcinogen-DNA adducts in human breast epithelial cells. Environ Mol Mutagen 39(2–3):184–192

    Article  CAS  PubMed  Google Scholar 

  63. Lodovici M, Akpan V, Evangelisti C, Dolara P (2004) Sidestream tobacco smoke as the main predictor of exposure to polycyclic aromatic hydrocarbons. J Appl Toxicol 24(4):277–281

    Article  CAS  PubMed  Google Scholar 

  64. DeBruin LS, Josephy PD (2002) Perspectives on the chemical etiology of breast cancer. Environ Health Perspect 110(Suppl 1):119–128

    CAS  PubMed  Google Scholar 

  65. Kadlubar FF (1994) DNA adducts of carcinogenic aromatic amines. IARC Sci Publ 125:199–216

    CAS  PubMed  Google Scholar 

  66. Schut HA, Snyderwine EG (1999) DNA adducts of heterocyclic amine food mutagens: implications for mutagenesis and carcinogenesis. Carcinogenesis 20(3):353–368

    Article  CAS  PubMed  Google Scholar 

  67. Zhao H, Wang LE, Li D, Chamberlain RM, Sturgis EM, Wei Q (2008) Genotypes and haplotypes of ERCC1 and ERCC2/XPD genes predict levels of benzo[a]pyrene diol epoxide-induced DNA adducts in cultured primary lymphocytes from healthy individuals: a genotype-phenotype correlation analysis. Carcinogenesis 29(8):1560–1566

    Article  CAS  PubMed  Google Scholar 

  68. Berwick M, Vineis P (2000) Markers of DNA repair and susceptibility to cancer in humans: an epidemiologic review. J Natl Cancer Inst 92(11):874–897

    Article  CAS  PubMed  Google Scholar 

  69. Neumann AS, Sturgis EM, Wei Q (2005) Nucleotide excision repair as a marker for susceptibility to tobacco-related cancers: a review of molecular epidemiological studies. Mol Carcinog 42(2):65–92

    Article  CAS  PubMed  Google Scholar 

  70. Kiyohara C, Yoshimasu K (2007) Genetic polymorphisms in the nucleotide excision repair pathway and lung cancer risk: a meta-analysis. Int J Med Sci 4(2):59–71

    CAS  PubMed  Google Scholar 

  71. Duell EJ, Wiencke JK, Cheng TJ, Varkonyi A, Zuo ZF, Ashok TD, Mark EJ, Wain JC, Christiani DC, Kelsey KT (2000) Polymorphisms in the DNA repair genes XRCC1 and ERCC2 and biomarkers of DNA damage in human blood mononuclear cells. Carcinogenesis 21(5):965–971

    Article  CAS  PubMed  Google Scholar 

  72. Matullo G, Palli D, Peluso M, Guarrera S, Carturan S, Celentano E, Krogh V, Munnia A, Tumino R, Polidoro S et al (2001) XRCC1, XRCC3, XPD gene polymorphisms, smoking and (32)P-DNA adducts in a sample of healthy subjects. Carcinogenesis 22(9):1437–1445

    Article  CAS  PubMed  Google Scholar 

  73. Matullo G, Peluso M, Polidoro S, Guarrera S, Munnia A, Krogh V, Masala G, Berrino F, Panico S, Tumino R et al (2003) Combination of DNA repair gene single nucleotide polymorphisms and increased levels of DNA adducts in a population-based study. Cancer Epidemiol Biomarkers Prev 12(7):674–677

    CAS  PubMed  Google Scholar 

  74. Palli D, Russo A, Masala G, Saieva C, Guarrera S, Carturan S, Munnia A, Matullo G, Peluso M (2001) DNA adduct levels and DNA repair polymorphisms in traffic-exposed workers and a general population sample. Int J Cancer 94(1):121–127

    Article  CAS  PubMed  Google Scholar 

  75. Hou SM, Falt S, Angelini S, Yang K, Nyberg F, Lambert B, Hemminki K (2002) The XPD variant alleles are associated with increased aromatic DNA adduct level and lung cancer risk. Carcinogenesis 23(4):599–603

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The Philippine Department of Science and Technology (DOST) awarded Noel Pabalan with a Balik-Scientist Status. The Canadian Breast Cancer Foundation (CBCF) grant supports Hilmi Ozcelik. Lillian Sung is supported by a New Investigator Award from the Canadian Institutes of Health Research. We thank Dr. Xiangdong Liu of Analytic Genetics Technology Centre, Princess Margaret Hospital, Toronto, Canada; Hong Li of Ozcelik’s Laboratory, Mount Sinai Hospital, Toronto, Canada; Dorothy Joy Ireneo and Darwin Casuga of the Library Services in Saint Louis University for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hilmi Ozcelik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pabalan, N., Francisco-Pabalan, O., Sung, L. et al. Meta-analysis of two ERCC2 (XPD) polymorphisms, Asp312Asn and Lys751Gln, in breast cancer. Breast Cancer Res Treat 124, 531–541 (2010). https://doi.org/10.1007/s10549-010-0863-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-010-0863-6

Keywords

Navigation