Skip to main content

Advertisement

Log in

Cytotoxicity and mechanism of action of a new ROS-generating microsphere formulation for circumventing multidrug resistance in breast cancer cells

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Multidrug resistance (MDR) is one of the main challenges in the treatment of breast cancer. A new microsphere formulation able to generate reactive oxygen species (ROS) locally was thus investigated for circumventing MDR in breast cancer cells in this work. Glucose oxidase (GOX) was encapsulated in alginate/chitosan hydrogel microspheres (ACMS-GOX). The in vitro cytotoxicity of ACMS-GOX to murine breast cancer EMT6/AR1.0 cells, which overexpress P-glycoprotein (P-gp), was evaluated by a clonogenic assay. The mechanism of the cytotoxicity of ACMS-GOX was investigated by using various extracellular and intracellular ROS scavengers and antioxidant enzyme inhibitors. The effect of lipid peroxidation and cellular uptake of GOX was also evaluated. ACMS-GOX exhibited similar dose and time-dependent cytotoxicity to EMT6/AR1.0 cells as to their wild-type EMT6/WT parent cells, in effect circumventing the MDR phenotype of EMT6/AR1.0 cells. Extracellular H2O2 and intracellular hydroxyl radical were found to play critical roles in the cytotoxicity of ACMS-GOX. Cellular uptake of GOX was negligible and thus not responsible for intracellular ROS generation. Combining ACMS-GOX with intracellular antioxidant inhibitors-enhanced cytoxicity. This work demonstrates that the ACMS-GOX are effective in circumventing P-gp-mediated MDR in breast cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wong HL, Wu XY, Bendayan R (2009) Multidrug resistance in solid tumor and its reversal. In Lu Y, Mahato RI (eds.) Pharmaceutical aspects of cancer chemotherapy (on invitation). Springer, New York, pp. 121–148.

  2. Tannock IF, Hill RP (1998) The basic science of oncology. In: Tannock IF, Goldenberg GJ (eds) Drug resistance and experimental chemotherapy. McGraw-Hill, Toronto, pp 392–419

    Google Scholar 

  3. McDevitt CA, Callaghan R (2007) How can we best use structural information on P-glycoprotein to design inhibitors? Pharmacol Ther 113:429–441

    Article  PubMed  CAS  Google Scholar 

  4. Leonard GD, Polgar O, Bates SE (2002) ABC transporters and inhibitors: new targets, new agents. Curr Opin Investig Drugs 3:1652–1659

    PubMed  CAS  Google Scholar 

  5. Lage H (2006) MDR1/P-glycoprotein (ABCB1) as target for RNA interference-mediated reversal of multidrug resistance. Curr Drug Targets 7:813–821

    Article  PubMed  CAS  Google Scholar 

  6. Liscovitch M, Lavie Y (2002) Cancer multidrug resistance: a review of recent drug discovery research. Drugs 5:349–355

    CAS  Google Scholar 

  7. Ziemann C, Burkle A et al (1999) Reactive oxygen species participate in mdr1b mRNA and P-glycoprotein overexpression in primary rat hepatocyte cultures. Carcinogenesis 20:407–414

    Article  PubMed  CAS  Google Scholar 

  8. Wartenberg M, Hoffmann E et al (2005) Reactive oxygen species-linked regulation of the multidrug resistance transporter P-glycoprotein in Nox-1 overexpressing prostate tumor spheroids. FEBS Lett 579:4541–4549

    Article  PubMed  CAS  Google Scholar 

  9. Wartenberg M, Ling FC et al (2001) Down-regulation of intrinsic P-glycoprotein expression in multicellular prostate tumor spheroids by reactive oxygen species. J Biol Chem 276:17420–17428

    Article  PubMed  CAS  Google Scholar 

  10. Calcabrini A, Arancia G et al (2002) Enzymatic oxidation products of spermine induce greater cytotoxic effects on human multidrug-resistant colon carcinoma cells (LoVo) than on their wild-type counterparts. Int J Cancer 99:43–52

    Article  PubMed  CAS  Google Scholar 

  11. Lord-Fontaine S, Agostinelli E et al (2001) Amine oxidase, spermine, and hyperthermia induce cytotoxicity in P-glycoprotein overexpressing multidrug resistant Chinese hamster ovary cells. Biochem Cell Biol 79:165–175

    Article  PubMed  CAS  Google Scholar 

  12. McCord JM (1995) Superoxide radical: controversies, contradictions, and paradoxes. Proc Soc Exp Biol Med 209:112–117

    PubMed  CAS  Google Scholar 

  13. Hampton MB, Fadeel B, Orrenius S (1998) Redox regulation of the caspases during apoptosis. Ann N Y Acad Sci 854:328–335

    Article  PubMed  CAS  Google Scholar 

  14. Hileman EO, Liu J et al (2004) Intrinsic oxidative stress in cancer cells: a biochemical basis for therapeutic selectivity. Cancer Chemother Pharmacol 53:209–219

    Article  PubMed  CAS  Google Scholar 

  15. Ravi D, Das KC (2004) Redox-cycling of anthracyclines by thioredoxin system: increased superoxide generation and DNA damage. Cancer Chemother Pharmacol 54:449–458

    Article  PubMed  CAS  Google Scholar 

  16. Kotamraju S, Konorev EA et al (2000) Doxorubicin-induced apoptosis in endothelial cells and cardiomyocytes is ameliorated by nitrone spin traps and ebselen. Role of reactive oxygen and nitrogen species. J Biol Chem 275:33585–33592

    Article  PubMed  CAS  Google Scholar 

  17. Kim DS, Jeon SE et al (2006) Hydrogen peroxide is a mediator of indole-3-acetic acid/horseradish peroxidase-induced apoptosis. FEBS Lett 580:1439–1446

    Article  PubMed  CAS  Google Scholar 

  18. Poh TW, Pervaiz S (2005) LY294002 and LY303511 sensitize tumor cells to drug-induced apoptosis via intracellular hydrogen peroxide production independent of the phosphoinositide 3-kinase-Akt pathway. Cancer Res 65:6264–6274

    Article  PubMed  CAS  Google Scholar 

  19. Ren JG, Xia HL et al (2001) Hydroxyl radical-induced apoptosis in human tumor cells is associated with telomere shortening but not telomerase inhibition and caspase activation. FEBS Lett 488:123–132

    Article  PubMed  CAS  Google Scholar 

  20. Green HN, Westrop JW (1958) Hydrogen peroxide and tumor therapy. Nature 181:128–129

    Article  CAS  Google Scholar 

  21. Mealey J (1965) Regional infusion of vinblastine and hydrogen peroxide in tumor-bearing rats. J Cancer Res 25:1839–1843

    CAS  Google Scholar 

  22. Higuchi Y, Shoin S, Matsukawa S (1991) Enhancement of the antitumor effect of glucose oxidase by combined administration of hydrogen peroxide decomposition inhibitors together with an oxygenated fluorocarbon. Jpn J Cancer Res 82:942–949

    PubMed  CAS  Google Scholar 

  23. Ben-Yoseph O, Ross BD (1994) Oxidation therapy: the use of a reactive oxygen species-generating enzyme system for tumour treatment. Br J Cancer 70:1131–1135

    PubMed  CAS  Google Scholar 

  24. Averill-Bates DA, Cherif A et al (2005) Anti-tumoral effect of native and immobilized bovine serum amine oxidase in a mouse melanoma model. Biochem Pharmacol 69:1693–1704

    Article  PubMed  CAS  Google Scholar 

  25. Demers N, Agostinelli E et al (2001) Immobilization of native and poly(ethylene glycol)-treated (‘PEGylated’) bovine serum amine oxidase into a biocompatible hydrogel. Biotechnol Appl Biochem 33:201–207

    Article  PubMed  CAS  Google Scholar 

  26. Arancia G, Calcabrini A et al (2004) Mitochondrial alterations induced by serum amine oxidase and spermine on human multidrug resistant tumor cells. Amino Acids 26:273–282

    Article  PubMed  CAS  Google Scholar 

  27. Fang J, Sawa T et al (2002) Tumor-targeted delivery of polyethylene glycol-conjugated D-amino acid oxidase for antitumor therapy via enzymatic generation of hydrogen peroxide. Cancer Res 62:3138–3143

    PubMed  CAS  Google Scholar 

  28. Sawa T, Wu J et al (2000) Tumor-targeting chemotherapy by a xanthine oxidase-polymer conjugate that generates oxygen-free radicals in tumor tissue. Cancer Res 60:666–671

    PubMed  CAS  Google Scholar 

  29. Sugiyama T, Kumagai S et al (1998) Experimental and clinical evaluation of cisplatin-containing MS as intraperitoneal chemotherapy for ovarian cancer. Anticancer Res 18:2837–2842

    PubMed  CAS  Google Scholar 

  30. Tokuda K, Natsugoe S et al (1998) Design and testing of a new cisplatin form using a base material by combining poly-d, l-lactic acid and poly(ethylene glycol) acid against peritoneal metastasis. Int J Cancer 76:709–712

    Article  PubMed  CAS  Google Scholar 

  31. Hagiwara A, Sakakura C et al (1998) Therapeutic effects of 5-fluorouracil microspheres on peritoneal carcinomatosis induced by Colon 26 or B-16 melanoma in mice. Anticancer Drugs 9:287–289

    Article  PubMed  CAS  Google Scholar 

  32. Liu Z, Ballinger JR et al (2003) Delivery of an anticancer drug and a chemosensitizer to murine breast sarcoma by intratumoral injection of sulfopropyl dextran microspheres. J Pharm Pharmacol 55:1063–1073

    Article  PubMed  CAS  Google Scholar 

  33. Cheung RY, Rauth AM, Wu XY (2005) In vivo efficacy and toxicity of intratumorally delivered mitomycin C and its combination with doxorubicin using microsphere formulations. Anticancer Drugs 16:423–433

    Article  PubMed  CAS  Google Scholar 

  34. Liu J, Meisner D, Kwong E, Wu XY, Johnston MR (2009) Trans-lymphatic delivery of paclitaxel by intrapleural placement of gelatin sponge impregnated with PLGA-paclitaxel microspheres effectively controls lymphatic metastasis in an orthotopic lung cancer model. Cancer Res 69:1174–1181

    Article  PubMed  CAS  Google Scholar 

  35. Wong HL, Rauth AM, Bendayan R, Wu XY (2007) In vivo evaluation of a new polymer-lipid hybrid nanoparticle (PLN) formulation of doxorubicin in a murine solid tumor model. Eur J Pharm Biopharm 65:300–308

    Article  PubMed  CAS  Google Scholar 

  36. Wong HL, Rauth AM et al (2006) A new polymer-lipid hybrid nanoparticle system increases cytotoxicity of doxorubicin against multidrug-resistant human breast cancer cells. Pharm Res 23:1574–1585

    Article  PubMed  CAS  Google Scholar 

  37. Shuhendler AJ, Cheung R, Manias J, Connor A, Rauth AM, Wu XY (2009) A novel doxorubicin-mitomycin C co-encapsulated nanoparticle formulation exhibits anti-cancer synergy in multidrug resistant human breast cancer cells. Breast Cancer Res Treatment. doi: 10.1007/s10549-008-0271-3 (Epub Apr 2009)

  38. Liu Q, Rauth AM, Wu XY (2007) Immobilization and bioactivity of glucose oxidase in hydrogel microspheres formulated by an emulsification-internal gelation-adsorption-polyelectrolyte coating method. Int J Pharm 339:148–156

    Article  PubMed  CAS  Google Scholar 

  39. Hsu SC, Don TM, Chiu WY (2002) Free radical degradation of chitosan with potassium persulfate. Polym Degrad Stab 75:73–83

    Article  CAS  Google Scholar 

  40. Bristow RG, Hill RP (1998) The Basic Science of Oncology. In: Tannock IF, Hill RP (eds) Molecular and cellular basis of radiotherapy. McGraw-Hill, Toronto, pp 295–321

    Google Scholar 

  41. Rollet-Labelle E, Grange MJ et al (1998) Hydroxyl radical as a potential intracellular mediator of polymorphonuclear neutrophil apoptosis. Free Radic Biol Med 24:563–572

    Article  PubMed  CAS  Google Scholar 

  42. Cheung RY, Rauth AM et al (2006) In vitro toxicity to breast cancer cells of icrosphere-delivered mitomycin C and its combination with doxorubicin. Eur J Pharm Biopharm 62:321–331

    Article  PubMed  CAS  Google Scholar 

  43. Wong HL, Bendayan R et al (2006) A mechanistic study of enhanced doxorubicin uptake and retention in multidrug resistant breast cancer cells using a polymer-lipid hybrid nanoparticle system. J Pharma Expert Ther 317:1372–1381

    Article  CAS  Google Scholar 

  44. Liu Q (2008) Enzyme microencapsulation and its application for overcoming multidrug resistance in breast cancer treatment. University of Toronto, Toronto

    Google Scholar 

  45. Pelicano H, Carney D, Huang P (2004) ROS stress in cancer cells and therapeutic implications. Drug Resist Updat 7:97–110

    Article  PubMed  CAS  Google Scholar 

  46. Beckman KB, Ames BN (1997) Oxidative decay of DNA. J Biol Chem 272:19633–19636

    Article  PubMed  CAS  Google Scholar 

  47. Berlet BS, Stadtman ER (1997) Protein oxidation in aging, disease, and oxidative stress. J Biol Chem 272:20313–20316

    Article  Google Scholar 

  48. Halliwell B, Gutteridge JM (1984) Free radicals, lipid peroxidation and cell damage. Lancet. 23:1396–1397

    Google Scholar 

  49. Roots R, Okada S (1975) Estimation of life times and diffusion distances of radicals involved in X-ray-induced DNA strand breaks or killing of mammalian cells. Radiat Res 64:306–320

    Article  PubMed  CAS  Google Scholar 

  50. Baud O, Greene AE et al (2004) Glutathione peroxidase-catalase cooperativity is required for resistance to hydrogen peroxide by mature rat oligodendrocytes. J Neurosci 24:1531–1540

    Article  PubMed  CAS  Google Scholar 

  51. Ohta H, Okamoto I et al (2006) Enhanced antioxidant defense due to extracellular catalase activity in Syrian hamster during arousal from hibernation. Comp Biochem Physiol C 143:484–491

    Google Scholar 

Download references

Acknowledgments

The authors sincerely thank Dr. P. Wells for allowing them to use their cell culture facilities, Dr. T. Preston, Ms. C. Lee, and Ms. A. Ramkissoon for their kind help and useful discussion. The University of Toronto Open Fellowships and Ben Cohen Fund conferred to Q. Liu, the Ontario Graduate Scholarship and University to up-fund to A. Shuhendler are also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Yu Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Q., Shuhendler, A., Cheng, J. et al. Cytotoxicity and mechanism of action of a new ROS-generating microsphere formulation for circumventing multidrug resistance in breast cancer cells. Breast Cancer Res Treat 121, 323–333 (2010). https://doi.org/10.1007/s10549-009-0473-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-009-0473-3

Keywords

Navigation