Skip to main content

Advertisement

Log in

Tamoxifen and ICI 182,780 increase Bcl-2 levels and inhibit growth of breast carcinoma cells by modulating PI3K/AKT, ERK and IGF-1R pathways independent of ERα

  • Brief Report
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

We recently showed that estrogen withdrawal from the ERα+, high Bcl-2-expressing breast carcinoma cells (MCF-7B) reduced Bcl-2 protein levels while increasing cell–cell adhesion, and junction formation. Here we compared these cells with the ERα+ and low Bcl-2-expressing MCF-7 cells and with the normal mammary epithelial cell line MCF-10-2A not expressing ERα or Bcl-2. All cell lines expressed normal HER2. Antiestrogen (Tamoxifen and ICI 182,780) treatment increased Bcl-2 levels in both MCF-7 and -7B cells and led to the formation of acinar structures. This treatment led to the dissociation of junctions and redistribution of junctional components to the cytoplasm in MCF-10-2A and -7 cells, while in MCF-7B cells junctional proteins redistributed to membranes. Antiestrogen treatment decreased PI3K/Akt activation and increased ERK activation regardless of ERα status. IGF-1R was inactivated in the antiestrogen-treated MCF-7 cells while it was activated in MCF-7B cells. Our data show that Tamoxifen and ICI 182,780 can induce growth inhibitory effects via the sustained activation/inactivation of signaling pathways that regulate cell survival, cell death and differentiation in the absence of ERα. Furthermore, Bcl-2 overexpression may alter the functional interactions among these pathways in response to antiestrogens, which also may provide a potential explanation for the observation that Bcl-2 overexpressing tumors have a better prognosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Hartsock A, Nelson WJ (2008) Adherens and tight junctions: structure function and connections to the actin cytoskeleton. Biochim Biophys Acta 1778:660–669. doi:10.1016/j.bbamem.2007.07.012

    Article  PubMed  CAS  Google Scholar 

  2. Perez-Moreno M, Fuchs E (2006) Catenins: keeping cells from getting their signals crossed. Dev Cell 11:601–612. doi:10.1016/j.devcel.2006.10.010

    Article  PubMed  CAS  Google Scholar 

  3. Müller EJ, Williamson L, Kolly C, Suter MM (2008) Outside-in signaling through integrins and cadherins: a central mechanism to control epidermal growth and differentiation? J Invest Dermatol 128:501–516. doi:10.1038/sj.jid.5701248

    Article  PubMed  CAS  Google Scholar 

  4. McLachlan RW, Yap AS (2007) Not so simple: the complexity of phosphotyrosine signaling at cadherin adhesive contacts. J Mol Med 85:545–554. doi:10.1007/s00109-007-0198-x

    Article  PubMed  CAS  Google Scholar 

  5. Jäger R (2007) Targeting the death machinery in mammary epithelial cells: implications for breast cancer from transgenic and tissue culture experiments. Crit Rev Oncol Hematol 63:231–240. doi:10.1016/j.critrevonc.2007.05.006

    Article  PubMed  Google Scholar 

  6. Adams JM, Cory S (2007) Bcl-2-regulated apoptosis: mechanism and therapeutic potential. Curr Opin Immunol 19:488–496. doi:10.1016/j.coi.2007.05.004

    Article  PubMed  CAS  Google Scholar 

  7. Adams JM, Cory S (2007) The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene 26:1324–1337. doi:10.1038/sj.onc.1210220

    Article  PubMed  CAS  Google Scholar 

  8. Cory S, Huang DC, Adams JM (2003) The Bcl-2 family: roles in cell survival and oncogenesis. Oncogene 22:8590–8607. doi:10.1038/sj.onc.1207102

    Article  PubMed  CAS  Google Scholar 

  9. Nahta R, Esteva FJ (2003) Bcl-2 antisense oligonucleotides: a potential novel strategy for the treatment of breast cancer. Semin Oncol 30:143–149. doi:10.1053/j.seminoncol.2003.08.016

    Article  PubMed  CAS  Google Scholar 

  10. Parl FF (2000) Estrogens estrogen receptor and breast cancer. IOS Press, Amsterdam

    Google Scholar 

  11. Planas-Silva MD, Bruggeman RD, Grenko RT, Smith JS (2007) Overexpression of c-Myc and Bcl-2 during progression and distant metastasis of hormone-treated breast cancer. Exp Mol Pathol 82:85–90. doi:10.1016/j.yexmp.2006.09.001

    Article  PubMed  CAS  Google Scholar 

  12. Perillo B, Sasso A, Abbondanza C, Palumbo G (2000) 17beta-estradiol inhibits apoptosis in MCF-7 cells inducing Bcl-2 expression via two estrogen-responsive elements present in the coding sequence. Mol Cell Biol 20:2890–2901. doi:10.1128/MCB.20.8.2890-2901.2000

    Article  PubMed  CAS  Google Scholar 

  13. Fearon ER (2003) Connecting estrogen receptor function transcriptional repression and E-cadherin expression in breast cancer. Cancer Cell 3:307–310. doi:10.1016/S1535-6108(03)00087-4

    Article  PubMed  CAS  Google Scholar 

  14. Li L, Backer J, Wong AS, Schwanke EL, Stewart BG, Pasdar M (2003) Bcl-2 expression decreases cadherin-mediated cell–cell adhesion. J Cell Sci 116:3687–3700. doi:10.1242/jcs.00644

    Article  PubMed  CAS  Google Scholar 

  15. Zantek ND, Walker-Daniels J, Stewart J, Hansen RK, Robinson D, Miao H, Wang B, Kung HJ, Bissell MJ, Kinch MS (2001) MCF-10A-NeoST: a new cell system for studying cell–ECM and cell–cell interactions in breast cancer. Clin Cancer Res 7:3640–3648

    PubMed  CAS  Google Scholar 

  16. Chan TW, Pollak M, Huynh H (2001) Inhibition of insulin-like growth factor signaling pathways in mammary gland by pure antiestrogen ICI 182,780. Clin Cancer Res 7:2545–2554

    PubMed  CAS  Google Scholar 

  17. Vignon F, Bouton MM, Rochefort H (1987) Antiestrogens inhibit the mitogenic effect of growth factors on breast cancer cells in the total absence of estrogens. Biochem Biophys Res Commun 14:1502–1508. doi:10.1016/0006-291X(87)90819-9

    Article  Google Scholar 

  18. Huynh H, Pollak M (1994) Uterotrophic actions of estradiol and tamoxifen are associated with inhibition of uterine insulin-like growth factor binding protein 3 gene expression. Cancer Res 54:3115–3119

    PubMed  CAS  Google Scholar 

  19. Maddika S, Ande SR, Panigrahi S, Paranjothy T, Weglarczyk K, Zuse A, Eshraghi M, Manda KD, Wiechec E, Los M (2007) Cell survival, cell death and cell cycle pathways are interconnected: implications for cancer therapy. Drug Resist Updat 10:13–29. doi:10.1016/j.drup.2007.01.003

    Article  PubMed  CAS  Google Scholar 

  20. Zinkel S, Gross A, Yang E (2006) BCL2 family in DNA damage and cell cycle control. Cell Death Differ 13:1351–1359. doi:10.1038/sj.cdd.4401987

    Article  PubMed  CAS  Google Scholar 

  21. Kirkin V, Joos S, Zornig M (2004) The role of Bcl-2 family members in tumorigenesis. Biochim Biophys Acta 1644:229–249. doi:10.1016/j.bbamcr.2003.08.009

    Article  PubMed  CAS  Google Scholar 

  22. Thomadaki H, Talieri M, Scorilas A (2007) Prognostic value of the apoptosis related genes BCL2 and BCL2L12 in breast cancer. Cancer Lett 247:48–55. doi:10.1016/j.canlet.2006.03.016

    Article  PubMed  CAS  Google Scholar 

  23. Lee KH, Im SA, Oh DY, Lee SH, Chie EK, Han W, Kim DW, Kim TY, Park IA, Noh DY, Heo DS, Ha SW, Bang YJ (2007) Prognostic significance of Bcl-2 expression in stage III breast cancer patients who had received doxorubicin and cyclophosphamide followed by paclitaxel as adjuvant chemotherapy. BMC Cancer 7:63. doi:10.1186/1471-2407-7-63

    Article  PubMed  CAS  Google Scholar 

  24. Hosaka N, Ryu T, Cui W, Li Q, Nishida A, Miyake T, Takaki T, Inaba M, Ikehara S (2006) Relationship of p53, Bcl-2, Ki-67 index and E-cadherin expression in early invasive breast cancers with comedonecrosis as an accelerated apoptosis. J Clin Pathol 59:692–698. doi:10.1136/jcp.2005.030296

    Article  PubMed  CAS  Google Scholar 

  25. van Slooten HJ, Clahsen PC, van Dierendonck JH, Duval C, Pallud C, Mandard AM, Delobelle-Deroide A, van de Velde CJ, van de Vijver MJ (1996) Expression of Bcl-2 in node negative breast cancer is associated with various prognostic factors, but does not predict response to one course of perioperative chemotherapy. Br J Cancer 74:78–85

    PubMed  Google Scholar 

  26. Yang Q, Mori I, Sakurai T, Yoshimura G, Suzuma T, Nakamura Y, Nakamura M, Taniguchi T, Tamaki T, Umemura T, Kakudo K (2001) Correlation between nuclear grade and biological prognostic variables in invasive breast cancer. Breast Cancer 8:105–110. doi:10.1007/BF02967488

    Article  PubMed  CAS  Google Scholar 

  27. Beral V (2003) Breast cancer and hormone-replacement therapy in the million women study. Lancet 362:419–427. doi:10.1016/S0140-6736(03)14596-5

    Article  PubMed  CAS  Google Scholar 

  28. Kushner PJ, Agard DA, Greene GL, Scanlan TS, Shiau AK, Uht RM, Webb P (2000) Estrogen receptor pathways to AP-1. J Steroid Biochem Mol Biol 74:311–317. doi:10.1016/S0960-0760(00)00108-4

    Article  PubMed  CAS  Google Scholar 

  29. Saville B, Wormke M, Wang F, Nguyen T, Kuiper G, Gustafsson JA, Safe S (2000) Ligand-, cell-, and estrogen receptor subtype (a/h)-dependent activation at GC-rich (Sp1) promoter elements. J Biol Chem 275:5379–5387. doi:10.1074/jbc.275.8.5379

    Article  PubMed  CAS  Google Scholar 

  30. Song RX (2007) Membrane-initiated steroid signaling action of estrogen and breast cancer. Semin Reprod Med 25:187–197. doi:10.1055/s-2007-973431

    Article  PubMed  CAS  Google Scholar 

  31. Heldring N, Pike A, Andersson S, Matthews J, Cheng G, Hartman J, Tujague M, Strom A, Treuter E, Warner M, Gustafsson JA (2007) Estrogen receptors: how do they signal and what are their targets. Physiol Rev 87:905–931. doi:10.1152/physrev.00026.2006

    Article  PubMed  CAS  Google Scholar 

  32. Johnston SR (2005) Endocrinology and hormone therapy in breast cancer: selective oestrogen receptor modulators and downregulators for breast cancer—have they lost their way? Breast Cancer Res 7:119–130. doi:10.1186/bcr1023

    Article  PubMed  CAS  Google Scholar 

  33. Jordan C (2002) Historical perspective on hormonal therapy of advanced breast cancer. Clin Ther 24(suppl. A):A3–A16. doi:10.1016/S0149-2918(02)85031-7

    Article  PubMed  CAS  Google Scholar 

  34. Chia S, Bryce C, Gelmon K (2005) The 2000 EBCTCG overview: a widening gap. Lancet 365:1665–1666. doi:10.1016/S0140-6736(05)66524-5

    Article  PubMed  CAS  Google Scholar 

  35. Gielen SC, Kuhne LC, Ewing PC, Blok LJ, Burger CW (2005) Tamoxifen treatment for breast cancer enforces a distinct gene-expression profile on the human endometrium: an exploratory study. Endocr Relat Cancer 12:1037–1049. doi:10.1677/erc.1.01046

    Article  PubMed  CAS  Google Scholar 

  36. Jonat W, Hilpert F, Kaufmann M (2007) Aromatase inhibitors: a safety comparison. Expert Opin Drug Saf 6:165–174. doi:10.1517/14740338.6.2.165

    Article  PubMed  CAS  Google Scholar 

  37. Fan M, Bigsby RM, Nephew KP (2003) The NEDD8 pathway is required for proteosome-mediated degradation of human estrogen receptor (ER)-alpha and essential for the antiproliferative activity of ICI 182,780 in ERalpha-positive breast cancer cells. Mol Endocrinol 17:356–365. doi:10.1210/me.2002-0323

    Article  PubMed  CAS  Google Scholar 

  38. Long X, Nephew KP (2006) Fulvestrant (ICI 182,780)-dependent interacting proteins mediate immobilization and degradation of estrogen receptor-alpha. J Biol Chem 281:9607–9615. doi:10.1074/jbc.M510809200

    Article  PubMed  CAS  Google Scholar 

  39. Dauvois S, White R, Parker MG (1993) The antiestrogen ICI 182780 disrupts estrogen receptor nucleocytoplasmic shuttling. J Cell Sci 106:1377–1388

    PubMed  CAS  Google Scholar 

  40. Oliveira CA, Nie R, Carnes K, Franca LR, Prins GS, Saunders PT, Hess RA (2003) The antiestrogen ICI 182, 780 decreases the expression of estrogen receptor-alpha but has no effect on estrogen receptor-beta and androgen receptor in rat efferent ductules. Reprod Biol Endocrinol 10(1):75

    Article  Google Scholar 

  41. Doisneau-Sixou SF, Sergio CM, Carroll JS, Hui R, Musgrove EA, Sutherland RL (2003) Estrogen and antiestrogen regulation of cell cycle progression in breast cancer cells. Endocr Relat Cancer 10:179–186. doi:10.1677/erc.0.0100179

    Article  PubMed  CAS  Google Scholar 

  42. Riggins RB, Bouton AH, Liu MC, Clarke R (2005) Antiestrogens, aromatase inhibitors, and apoptosis in breast cancer. Vitam Horm 71:201–237. doi:10.1016/S0083-6729(05)71007-4

    Article  PubMed  CAS  Google Scholar 

  43. Dong L, Wang W, Wang F, Stoner M, Reed JC, Harigai M, Samudio I, Kladde MP, Vyhlidal C, Safe S (1999) Mechanisms of transcriptional activation of Bcl-2 gene expression by 17beta-estradiol in breast cancer cells. J Biol Chem 274:32099–32107. doi:10.1074/jbc.274.45.32099

    Article  PubMed  CAS  Google Scholar 

  44. Pratt MA, Krajewski S, Menard M, Krajewska M, Macleod H, Reed JC (1998) Estrogen withdrawal-induced human breast cancer tumour regression in nude mice is prevented by Bcl-2. FEBS Lett 440:403–408. doi:10.1016/S0014-5793(98)01499-9

    Article  PubMed  CAS  Google Scholar 

  45. Wang X, Belguise K, Kersual N, Kirsch KH, Mineva ND, Galtier F, Chalbos D, Sonenshein GE (2007) Oestrogen signalling inhibits invasive phenotype by repressing RelB and its target BCL2. Nat Cell Biol 9:470–478. doi:10.1038/ncb1559

    Article  PubMed  CAS  Google Scholar 

  46. Spencer VA, Xu R, Bissell MJ (2007) Extracellular matrix, nuclear and chromatin structure, and gene expression in normal tissues and malignant tumors: a work in progress. Adv Cancer Res 97:275–294. doi:10.1016/S0065-230X(06)97012-2

    Article  PubMed  CAS  Google Scholar 

  47. Bissell MJ (2007) Modelling molecular mechanisms of breast cancer and invasion: lessons from the normal gland. Biochem Soc Trans 35:18–22. doi:10.1042/BST0350018

    Article  PubMed  CAS  Google Scholar 

  48. Nelson CM, Bissell MJ (2006) Of extracellular matrix, scaffolds, and signaling: tissue architecture regulates development, homeostasis, and cancer. Annu Rev Cell Dev Biol 22:287–309. doi:10.1146/annurev.cellbio.22.010305.104315

    Article  PubMed  CAS  Google Scholar 

  49. Petersen OW, Ronnov-Jessen L, Howlett AR, Bissell MJ (1992) Interaction with basement membrane serves to rapidly distinguish growth and differentiation pattern of normal and malignant human breast epithelial cells. Proc Natl Acad Sci USA 89:9064–9068. doi:10.1073/pnas.89.19.9064

    Article  PubMed  CAS  Google Scholar 

  50. Debnath J, Muthuswamy SK, Brugge JS (2003) Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods 30:256–268. doi:10.1016/S1046-2023(03)00032-X

    Article  PubMed  CAS  Google Scholar 

  51. Muthuswamy SK, Li D, Lelievre S, Bissell MJ, Brugge JS (2001) ErbB2, but not ErbB1, reinitiates proliferation and induces lumenal repopulation in epithelial acini. Nat Cell Biol 3:785–792. doi:10.1038/ncb0901-785

    Article  PubMed  CAS  Google Scholar 

  52. Nelyudova A, Aksenov N, Pospelov V, Pospelova T (2007) By blocking apoptosis, Bcl-2 in p38-dependent manner promotes cell cycle arrest and accelerated senescence after DNA damage and serum withdrawal. Cell Cycle 6:2171–2177

    PubMed  CAS  Google Scholar 

  53. Tophkhane C, Yang S, Bales W, Archer L, Osunkoya A, Thor AD, Yang X (2007) Bcl-2 overexpression sensitizes MCF-7 cells to genistein by multiple mechanisms. Int J Oncol 31:867–874

    PubMed  CAS  Google Scholar 

  54. Crescenzi E, Palumbo G (2001) Bcl-2 exerts a pRb-mediated cell cycle inhibitory function in HEC1B endometrial carcinoma cells. Gynecol Oncol 81:184–192. doi:10.1006/gyno.2001.6128

    Article  PubMed  CAS  Google Scholar 

  55. Nelyudova AM, Tararova ND, Aksenov ND, Pospelov VA, Pospelova TV (2004) Restoration of G1/S arrest in E1A + c-Ha-ras-transformed cells by Bcl-2 overexpression. Cell Cycle 3:1427–1432

    PubMed  CAS  Google Scholar 

  56. Debnath J, Mills KR, Collins NL, Reginato MJ, Muthuswamy SK, Brugge JS (2002) The role of apoptosis in creating and maintaining lumenal space within normal and oncogene expressing mammary acini. Cell 111:29–40. doi:10.1016/S0092-8674(02)01001-2

    Article  PubMed  CAS  Google Scholar 

  57. Reginato MJ, Mills KR, Becker EB, Lynch DK, Bonni A, Muthuswamy SK, Brugge JS (2005) Bim regulation of lumen formation in cultured mammary epithelial acini is targeted by oncogenes. Mol Cell Biol 25:4591–4601. doi:10.1128/MCB.25.11.4591-4601.2005

    Article  PubMed  CAS  Google Scholar 

  58. Schmelzle T, Mailleux AA, Overholtzer M, Carroll JS, Solimini NL, Lightcap ES, Veiby OP, Brugge JS (2007) Functional role and oncogene-regulated expression of the BH3-only factor Bmf in mammary epithelial anoikis and morphogenesis. Proc Natl Acad Sci USA 104:3787–3792. doi:10.1073/pnas.0700115104

    Article  PubMed  CAS  Google Scholar 

  59. Humphreys RC, Krajewska M, Krnacik S, Jaeger R, Weiher H, Krajewski S, Reed JC, Rosen JM (1996) Apoptosis in the terminal end bud of the murine mammary gland: a mechanism of ductal morphogenesis. Development 122:4013–4022

    PubMed  CAS  Google Scholar 

  60. Sperandio S, de Belle I, Bredesen DE (2000) An alternative, nonapoptotic form of programmed cell death. Proc Natl Acad Sci USA 97:14376–14381. doi:10.1073/pnas.97.26.14376

    Article  PubMed  CAS  Google Scholar 

  61. Wang Y, Li X, Wang L, Ding P, Zhang Y, Han W, Ma D (2004) An alternative form of paraptosis-like cell death, triggered by TAJ/TROY and enhanced by PDCD5 overexpression. J Cell Sci 117:1525–1532. doi:10.1242/jcs.00994

    Article  PubMed  CAS  Google Scholar 

  62. Sperandio S, Poksay K, de Belle I, Lafuente MJ, Liu B, Nasir J, Bredesen DE (2004) Paraptosis: mediation by MAP kinases and inhibition by AIP-1/Alix. Cell Death Differ 11:1066–1075. doi:10.1038/sj.cdd.4401465

    Article  PubMed  CAS  Google Scholar 

  63. Lee YR, Park J, Yu HN, Kim JS, Youn HJ, Jung SH (2005) Up-regulation of PI3K/Akt signaling by 17beta-estradiol through activation of estrogen receptor-alpha, but not estrogen receptor-beta, and stimulates cell growth in breast cancer cells. Biochem Biophys Res Commun 336:1221–1226. doi:10.1016/j.bbrc.2005.08.256

    Article  PubMed  CAS  Google Scholar 

  64. Sun M, Paciga JE, Feldman RI, Yuan Z, Coppola D, Lu YY, Shelley SA, Nicosia SV, Cheng JQ (2001) Phosphatidylinositol-3-OH kinase (PI3K)/AKT2, activated in breast cancer, regulates and is induced by estrogen receptor alpha (ERalpha) via interaction between ERalpha and PI3K. Cancer Res 61:5985–5991

    PubMed  CAS  Google Scholar 

  65. Johnston SR (2006) Targeting downstream effectors of epidermal growth factor receptor/HER2 in breast cancer with either farnesyltransferase inhibitors or mTOR antagonists. Int J Gynecol Cancer 2(suppl. 16):543–548. doi:10.1111/j.1525-1438.2006.00692.x

    Article  Google Scholar 

  66. Kirkegaard T, Witton CJ, McGlynn LM, Tovey SM, Dunne B, Lyon A, Bartlett JM (2005) AKT activation predicts outcome in breast cancer patients treated with tamoxifen. J Pathol 207:139–146. doi:10.1002/path.1829

    Article  PubMed  CAS  Google Scholar 

  67. Ripple MO, Kalmadi S, Eastman A (2005) Inhibition of either phosphatidylinositol 3-kinase/Akt or the mitogen/extracellular-regulated kinase, MEK/ERK, signaling pathways suppress growth of breast cancer cell lines, but MEK/ERK signaling is critical for cell survival. Breast Cancer Res Treat 93:177–188. doi:10.1007/s10549-005-4794-6

    Article  PubMed  CAS  Google Scholar 

  68. Beeram M, Tan QT, Tekmal RR, Russell D, Middleton A, DeGraffenried LA (2007) Akt induced endocrine therapy resistance is reversed by inhibition of mTOR signaling. Ann Oncol 18:1323–1328. doi:10.1093/annonc/mdm170

    Article  PubMed  CAS  Google Scholar 

  69. Zheng A, Kallio A, Härkönen P (2007) Tamoxifen-induced rapid death of MCF-7 breast cancer cells is mediated via extracellularly signal-regulated kinase signaling and can be abrogated by estrogen. Endocrinology 148:2764–2777. doi:10.1210/en.2006-1269

    Article  PubMed  CAS  Google Scholar 

  70. Santen RJ, Song RX, McPherson R, Kumar R, Adam L, Jeng MH, Yue W (2002) The role of mitogen-activated protein (MAP) kinase in breast cancer. J Steroid Biochem Mol Biol 80:239–256. doi:10.1016/S0960-0760(01)00189-3

    Article  PubMed  CAS  Google Scholar 

  71. Song RX, Fan P, Yue W, Chen Y, Santen RJ (2006) Role of receptor complexes in the extranuclear actions of estrogen receptor alpha in breast cancer. Endocr Relat Cancer 13(suppl. 1):S3–S13. doi:10.1677/erc.1.01322

    Article  PubMed  CAS  Google Scholar 

  72. Chen Q, Olashaw N, Wu J (1995) Participation of reactive oxygen species in the lysophosphatidic acid-stimulated mitogen-activated protein kinase kinase activation pathway. J Biol Chem 270:28499–28502. doi:10.1074/jbc.270.48.28499

    Article  PubMed  CAS  Google Scholar 

  73. Surmacz E, Bartucci M (2004) Role of estrogen receptor alpha in modulating IGF-I receptor signaling and function in breast cancer. J Exp Clin Cancer Res 23:385–394

    PubMed  CAS  Google Scholar 

  74. Song RX, Zhang Z, Chen Y, Bao Y, Santen RJ (2007) Estrogen signaling via a linear pathway involving insulin-like growth factor I receptor, matrix metalloproteinases, and epidermal growth factor receptor to activate mitogen-activated protein kinase in MCF-7 breast cancer cells. Endocrinology 148:4091–4101. doi:10.1210/en.2007-0240

    Article  PubMed  CAS  Google Scholar 

  75. Dhar K, Banerjee S, Dhar G, Sengupta K, Banerjee SK (2007) Insulin-like growth factor-1 (IGF-1) induces WISP-2/CCN5 via multiple molecular cross-talks and is essential for mitogenic switch by IGF-1 axis in estrogen receptor-positive breast tumor cells. Cancer Res 67:1520–1526. doi:10.1158/0008-5472.CAN-06-3753

    Article  PubMed  CAS  Google Scholar 

  76. Martin LA, Pancholi S, Chan CM, Farmer I, Kimberley C, Dowsett M, Johnston SR (2005) The anti-oestrogen ICI 182,780, but not tamoxifen, inhibits the growth of MCF-7 breast cancer cells refractory to long-term oestrogen deprivation through down-regulation of oestrogen receptor and IGF signalling. Endocr Relat Cancer 12:1017–1036. doi:10.1677/erc.1.00905

    Article  PubMed  CAS  Google Scholar 

  77. Shibata Y, Hidaka S, Tagawa Y, Nagayasu T (2004) Bcl-2 protein expression correlates with better prognosis in patients with advanced non-small cell lung cancer. Anticancer Res 24:1925–1928

    PubMed  CAS  Google Scholar 

  78. Crescenzi E, Sannino M, Tonziello G, Palumbo G (2002) Association of Bcl-2 with cyclin a/Cdk-2 complex and its effects on Cdk-2 activity. Ann N Y Acad Sci 973:268–271

    Article  PubMed  CAS  Google Scholar 

  79. Gasparini G, Barbareschi M, Doglioni C, Palma PD, Mauri FA, Boracchi P, Bevilacqua P, Caffo O, Morelli L, Verderio P, Pezzella F, Harris AL (1995) Expression of Bcl-2 protein predicts efficacy of adjuvant treatments in operable node-positive breast cancer. Clin Cancer Res 1:189–198

    PubMed  CAS  Google Scholar 

  80. Dlugosz PJ, Billen LP, Annis MG, Zhu W, Zhang Z, Lin J, Leber B, Andrews DW (2006) Free in PMC Bcl-2 changes conformation to inhibit Bax oligomerization. EMBO J 25:2287–2296. doi:10.1038/sj.emboj.7601126

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Kim Chapman and Drs. E. Shibuya, J. Mackey and R. Campenot for their critical review of the manuscript. This project has been made possible through grants from the Canadian Breast Cancer Foundation- PRAIRIES/NWT Chapter, and Alberta Cancer Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manijeh Pasdar.

Additional information

L. Lam and X. Hu contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10549_2008_231_MOESM1_ESM.jpg

Levels of the apoptosis regulating proteins in MCF-10-2A, -7, -7B and cultures treated with estrogen antagonists. Total cellular levels of Bcl-2, Bad, Bax and Bim and tubulin were determined by Western blot of the total cell lysates from control and drug-treated cultures of MCF-10-2A, -7 and -7B as described in Materials and methods. Histograms were generated by normalizing the amount of each protein to the amount of tubulin detected in the same extract sample relative to the untreated lysates (JPG 66 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lam, L., Hu, X., Aktary, Z. et al. Tamoxifen and ICI 182,780 increase Bcl-2 levels and inhibit growth of breast carcinoma cells by modulating PI3K/AKT, ERK and IGF-1R pathways independent of ERα. Breast Cancer Res Treat 118, 605–621 (2009). https://doi.org/10.1007/s10549-008-0231-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-008-0231-y

Keywords

Navigation