Skip to main content

Advertisement

Log in

CYP2C19*17 is associated with decreased breast cancer risk

  • Epidemiology
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Cytochrome P450 2C19 (CYP2C19) plays an important role in the metabolism of xenobiotics and drugs and contributes to the catabolism of endogenous substrates like estradiol. Genetic variability impacts expression and activity of CYP2C19 and therefore can influence catabolism of estrogens. In the present study we analyzed the association of three polymorphisms of CYP2C19 namely CYP2C19*2 (CYP2C19_681_G>A, rs4244285), CYP2C19*3 (CYP2C19_636_G>A, rs57081121) and CYP2C19*17 (CYP2C19_-806_C>T, rs12248560), with breast cancer susceptibility. We genotyped 1,015 breast cancer cases and 1,021 age-matched, population-based controls of the German GENICA study by matrix assisted laser desorption/ionization time-of-flight mass spectrometry. Risk estimates were calculated by logistic regression. All tests were two-sided. We observed a decreased breast cancer risk for carriers of the CYP2C19*17 allele (OR 0.77, 95% CI: 0.65–0.93; P = 0.005). In subgroup analysis we observed a significant decreased breast cancer risk for women using hormone therapy for ten years or longer who were carriers of the CYP2C19*17 allele (OR 0.57, 95% CI: 0.39–0.83; P = 0.003). Since CYP2C19*17 defines an ultra rapid metabolizer phenotype we suggest that an increased catabolism of estrogens by CYP2C19 may lead to decreased estrogen levels and therefore reduces breast cancer risk. This protective effect seems to be stronger in combination with long-term intake of supplemental estrogens during hormone therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Key TJ, Allen NE, Spencer EA, Travis RC (2002) The effect of diet on risk of cancer. Lancet 360:861–868. doi:10.1016/S0140-6736(02)09958-0

    Article  PubMed  CAS  Google Scholar 

  2. Folkerd EJ, Martin LA, Kendall A, Dowsett M (2006) The relationship between factors affecting endogenous oestradiol levels in postmenopausal women and breast cancer. J Steroid Biochem Mol Biol 102:250–255. doi:10.1016/j.jsbmb.2006.09.024

    Article  PubMed  CAS  Google Scholar 

  3. Justenhoven C, Hamann U, Schubert F, Zapatka M, Pierl CB, Rabstein S et al (2008) Breast cancer: a candidate gene approach across the estrogen metabolic pathway. Breast Cancer Res Treat 108:137–149

    Article  PubMed  CAS  Google Scholar 

  4. Cheng ZN, Shu Y, Liu ZQ, Wang LS, Ou-Yang DS, Zhou HH (2001) Role of cytochrome P450 in estradiol metabolism in vitro. Acta Pharmacol Sin 22:148–154

    PubMed  CAS  Google Scholar 

  5. Cribb AE, Knight MJ, Dryer D, Guernsey J, Hender K, Tesch M et al (2006) Role of polymorphic human cytochrome P450 enzymes in estrone oxidation. Cancer Epidemiol Biomarkers Prev 15:551–558. doi:10.1158/1055-9965.EPI-05-0801

    Article  PubMed  CAS  Google Scholar 

  6. Furuta T, Ohashi K, Kamata T, Takashima M, Kosuge K, Kawasaki T et al (1998) Effect of genetic differences in omeprazole metabolism on cure rates for Helicobacter pylori infection and peptic ulcer. Ann Intern Med 129:1027–1030

    PubMed  CAS  Google Scholar 

  7. Furuta T, Shirai N, Watanabe F, Honda S, Takeuchi K, Iida T et al (2002) Effect of cytochrome P4502C19 genotypic differences on cure rates for gastroesophageal reflux disease by lansoprazole. Clin Pharmacol Ther 72:453–460. doi:10.1067/mcp.2002.127637

    Article  PubMed  CAS  Google Scholar 

  8. Furuta T, Shirai N, Sugimoto M, Ohashi K, Ishizaki T (2004) Pharmacogenomics of proton pump inhibitors. Pharmacogenomics 5:181–202. doi:10.1517/phgs.5.2.181.27483

    Article  PubMed  CAS  Google Scholar 

  9. Kawamura M, Ohara S, Koike T, Iijima K, Suzuki J, Kayaba S et al (2003) The effects of lansoprazole on erosive reflux oesophagitis are influenced by CYP2C19 polymorphism. Aliment Pharmacol Ther 17:965–973. doi:10.1046/j.1365-2036.2003.01539.x

    Article  PubMed  CAS  Google Scholar 

  10. Kirchheiner J, Nickchen K, Bauer M, Wong ML, Licinio J, Roots I et al (2004) Pharmacogenetics of antidepressants and antipsychotics: the contribution of allelic variations to the phenotype of drug response. Mol Psychiatry 9:442–473. doi:10.1038/sj.mp.4001494

    Article  PubMed  CAS  Google Scholar 

  11. Schroth W, Antoniadou L, Fritz P, Schwab M, Muerdter T, Zanger UM et al (2007) Breast cancer treatment outcome with adjuvant tamoxifen relative to patient CYP2D6 and CYP2C19 genotypes. J Clin Oncol 25:5187–5193. doi:10.1200/JCO.2007.12.2705

    Article  PubMed  CAS  Google Scholar 

  12. De Morais SM, Goldstein JA, Xie HG, Huang SL, Lu YQ, Xia H et al (1995) Genetic analysis of the S-mephenytoin polymorphism in a Chinese population. Clin Pharmacol Ther 58:404–411. doi:10.1016/0009-9236(95)90053-5

    Article  PubMed  CAS  Google Scholar 

  13. Wedlund PJ (2000) The CYP2C19 enzyme polymorphism. Pharmacology 61:174–183. doi:10.1159/000028398

    Article  PubMed  CAS  Google Scholar 

  14. De Morais SM, Wilkinson GR, Blaisdell J, Meyer UA, Nakamura K, Goldstein JA (1994) Identification of a new genetic defect responsible for the polymorphism of (S)-mephenytoin metabolism in Japanese. Mol Pharmacol 46:594–598

    PubMed  Google Scholar 

  15. Roddam PL, Rollinson S, Kane E, Roman E, Moorman A, Cartwright R et al (2000) Poor metabolizers at the cytochrome P450 2D6 and 2C19 loci are at increased risk of developing adult acute leukaemia. Pharmacogenetics 10:605–615. doi:10.1097/00008571-200010000-00004

    Article  PubMed  CAS  Google Scholar 

  16. Sim SC, Risinger C, Dahl ML, Aklillu E, Christensen M, Bertilsson L et al (2006) A common novel CYP2C19 gene variant causes ultrarapid drug metabolism relevant for the drug response to proton pump inhibitors and antidepressants. Clin Pharmacol Ther 79:103–113. doi:10.1016/j.clpt.2005.10.002

    Article  PubMed  CAS  Google Scholar 

  17. Justenhoven C, Hamann U, Pesch B, Harth V, Rabstein S, Baisch C et al (2004) ERCC2 genotypes and a corresponding haplotype are linked with breast cancer risk in a German population. Cancer Epidemiol Biomarkers Prev 13:2059–2064

    PubMed  CAS  Google Scholar 

  18. Justenhoven C, Pierl CB, Haas S, Fischer HP, Baisch C, Hamann U et al (2007) The CYP1B1_1358_GG genotype is associated with estrogen receptor-negative breast cancer. Breast Cancer Res Treat. doi:10.1007/s10549-007-9762-x

  19. Pesch B, Ko Y, Brauch H, Hamann U, Harth V, Rabstein S et al (2005) Factors modifying the association between hormone-replacement therapy and breast cancer risk. Eur J Epidemiol 20:699–711. doi:10.1007/s10654-005-0032-0

    Article  PubMed  Google Scholar 

  20. Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265. doi:10.1093/bioinformatics/bth457

    Article  PubMed  CAS  Google Scholar 

  21. Kurzawski M, Gawronska-Szklarz B, Wrzesniewska J, Siuda A, Starzynska T, Drozdzik M (2006) Effect of CYP2C19*17 gene variant on Helicobacter pylori eradication in peptic ulcer patients. Eur J Clin Pharmacol 62:877–880. doi:10.1007/s00228-006-0183-2

    Article  PubMed  CAS  Google Scholar 

  22. Beral V (2003) Breast cancer and hormone-replacement therapy in the million women study. Lancet 362:419–427. doi:10.1016/S0140-6736(03)14596-5

    Article  PubMed  CAS  Google Scholar 

  23. Rossouw JE, Anderson GL, Prentice RL, LaCroix AZ, Kooperberg C, Stefanick ML et al Writing Group for the Women’s Health Initiative Investigators (2002) Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the women’s health initiative randomized controlled trial. JAMA 288:321–333. doi:10.1001/jama.288.3.321

    Google Scholar 

Download references

Acknowledgements

We are indebted to all women participating in the GENICA study. We gratefully acknowledge support by interviewers as well as physicians and pathologists of the study region. This work was supported by the Federal Ministry of Education and Research (BMBF) Germany grants 01KW9975/5, 01KW9976/8, 01KW9977/0 and 01KW0114, the Robert Bosch Foundation of Medical Research, Stuttgart, Department of Internal Medicine, Evangelische Kliniken Bonn gGmbH, Johanniter Krankenhaus, Bonn, Institute of Pathology, Medical Faculty of the University of Bonn, Deutsches Krebsforschungszentrum, Heidelberg, and Forschungsinstitut für Arbeitsmedizin der Deutschen Gesetzlichen Unfallversicherung, Bochum, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiltrud Brauch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Justenhoven, C., Hamann, U., Pierl, C.B. et al. CYP2C19*17 is associated with decreased breast cancer risk. Breast Cancer Res Treat 115, 391–396 (2009). https://doi.org/10.1007/s10549-008-0076-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-008-0076-4

Keywords

Navigation