Skip to main content
Log in

Removing Cardiac Artefacts in Magnetoencephalography with Resampled Moving Average Subtraction

  • Original Paper
  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

Magnetoencephalography (MEG) signals are commonly contaminated by cardiac artefacts (CAs). Principle component analysis and independent component analysis have been widely used for removing CAs, but they typically require a complex procedure for the identification of CA-related components. We propose a simple and efficient method, resampled moving average subtraction (RMAS), to remove CAs from MEG data. Based on an electrocardiogram (ECG) channel, a template for each cardiac cycle was estimated by a weighted average of epochs of MEG data over consecutive cardiac cycles, combined with a resampling technique for accurate alignment of the time waveforms. The template was subtracted from the corresponding epoch of the MEG data. The resampling reduced distortions due to asynchrony between the cardiac cycle and the MEG sampling times. The RMAS method successfully suppressed CAs while preserving both event-related responses and high-frequency (>45 Hz) components in the MEG data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allen PJ, Polizzi G, Krakow K, Fish DR, Lemieux L (1998) Identification of EEG events in the MR scanner: the problem of pulse artifact and a method for its subtraction. Neuroimage 8:229–239

    Article  CAS  PubMed  Google Scholar 

  • Allen PJ, Josephs O, Turner R (2000) A method for removing imaging artifact from continuous EEG recorded during functional MRI. Neuroimage 12:230–239

    Article  CAS  PubMed  Google Scholar 

  • Becker R, Ritter P, Moosmann M, Villringer A (2005) Visual evoked potentials recovered from fMRI scan periods. Hum Brain Mapp 26:221–230

    Article  PubMed  Google Scholar 

  • Breuer L, Dammers J, Roberts TP, Shah NJ (2014a) A constrained ICA approach for real-time cardiac artifact rejection in magnetoencephalography. IEEE Trans Biomed Eng 61:405–414

    Article  PubMed  Google Scholar 

  • Breuer L, Dammers J, Roberts TP, Shah NJ (2014b) Ocular and cardiac artifact rejection for real-time analysis in MEG. J Neurosci Methods 233:105–114

    Article  PubMed  Google Scholar 

  • Cohen D (1972) Magnetoencephalography: detection of the brain’s electrical activity with a superconducting magnetometer. Science 175:664–666

    Article  CAS  PubMed  Google Scholar 

  • Dammers J, Schiek M, Boers F, Silex C, Zvyagintsev M, Pietrzyk U, Mathiak K (2008) Integration of amplitude and phase statistics for complete artifact removal in independent components of neuromagnetic recordings. IEEE Trans Biomed Eng 55:2353–2362

    Article  PubMed  Google Scholar 

  • de Munck JC, van Houdt PJ, Goncalves SI, van Wegen E, Ossenblok PP (2013) Novel artefact removal algorithms for co-registered EEG/fMRI based on selective averaging and subtraction. Neuroimage 64:407–415

    Article  PubMed  Google Scholar 

  • Ellingson ML, Liebenthal E, Spanaki MV, Prieto TE, Binder JR, Ropella KM (2004) Ballistocardiogram artifact reduction in the simultaneous acquisition of auditory ERPS and fMRI. Neuroimage 22:1534–1542

    Article  CAS  PubMed  Google Scholar 

  • Escudero J, Hornero R, Abasolo D, Fernandez A, Lopez-Coronado M (2007) Artifact removal in magnetoencephalogram background activity with independent component analysis. IEEE Trans Biomed Eng 54:1965–1973

    Article  PubMed  Google Scholar 

  • Escudero J, Hornero R, Abasolo D, Fernandez A (2011) Quantitative evaluation of artifact removal in real magnetoencephalogram signals with blind source separation. Ann Biomed Eng 39:2274–2286

    Article  PubMed  Google Scholar 

  • Feuerstein D, Parker KH, Boutelle MG (2009) Practical methods for noise removal: applications to spikes, nonstationary quasi-periodic noise, and baseline drift. Anal Chem 81:4987–4994

    Article  CAS  PubMed  Google Scholar 

  • Florin E, Bock E, Baillet S (2013) Targeted reinforcement of neural oscillatory activity with real-time neuroimaging feedback. Neuroimage 88C:54–60

    Google Scholar 

  • Fonteneau E, Bozic M, Marslen-Wilson WD (2015) Brain network connectivity during language comprehension: interacting linguistic and perceptual subsystems. Cereb Cortex 25:3962–3976

    Article  PubMed  Google Scholar 

  • Garreffa G, Bianciardi M, Hagberg GE, Macaluso E, Marciani MG, Maraviglia B, Abbafati M, Carni M, Bruni I, Bianchi L (2004) Simultaneous EEG-fMRI acquisition: how far is it from being a standardized technique? Magn Reson Imaging 22:1445–1455

    Article  PubMed  Google Scholar 

  • Goldman RI, Stern JM, Engel J Jr, Cohen MS (2000) Acquiring simultaneous EEG and functional MRI. Clin Neurophysiol 111:1974–1980

    Article  CAS  PubMed  Google Scholar 

  • Hari R (2005) In: Niedermeyer E, da Lopes Silva F (eds) “Magnetoencephalography in clinical neurophysiological assessment of human cortical functions,” in Electroencephalography: basic principles, clinical applications, and related fields, 5th edn. Lippincott Williams & Wilkins, Philadelphia, pp 1165–1197

    Google Scholar 

  • Hashimoto T, Elder CM, Vitek JL (2002) A template subtraction method for stimulus artifact removal in high-frequency deep brain stimulation. J Neurosci Methods 113:181–186

    Article  PubMed  Google Scholar 

  • Hyvärinen A (1999) Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans Neural Netw 10:626–634

    Article  PubMed  Google Scholar 

  • Hyvärinen A, Oja E (1997) A fast fixed point algorithm for independent component analysis. Neural Comput 9(7):283–292

    Article  Google Scholar 

  • Hämäläinen M, Hari R, Ilmoniemi RJ, Knuutila J, Lounasmaa OV (1993) Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev Mod Phys 65:413–497

    Article  Google Scholar 

  • Jousmäki V, Hari R (1996) Cardiac artifacts in magnetoencephalogram. J Clin Neurophysiol 13:172–176

    Article  PubMed  Google Scholar 

  • LeVan P, Maclaren J, Herbst M, Sostheim R, Zaitsev M, Hennig J (2013) Ballistocardiographic artifact removal from simultaneous EEG-fMRI using an optical motion-tracking system. Neuroimage 75:1–11

    Article  PubMed  Google Scholar 

  • Mantini D, Franciotti R, Romani GL, Pizzella V (2008) Improving MEG source localizations: an automated method for complete artifact removal based on independent component analysis. Neuroimage 40:160–173

    Article  CAS  PubMed  Google Scholar 

  • Mellinger J, Schalk G, Braun C, Preissl H, Rosenstiel W, Birbaumer N, Kubler A (2007) An MEG-based brain-computer interface (BCI). Neuroimage 36:581–593

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramirez RR, Kopell BH, Butson CR, Hiner BC, Baillet S (2011) Spectral signal space projection algorithm for frequency domain MEG and EEG denoising, whitening, and source imaging. Neuroimage 56:78–92

    Article  PubMed  Google Scholar 

  • Rodin E, Funke M, Haueisen J (2005) Cardio-respiratory contributions to the magnetoencephalogram. Brain Topogr 18:37–46

    Article  CAS  PubMed  Google Scholar 

  • Sander TH, Wubbeler G, Lueschow A, Curio G, Trahms L (2002) Cardiac artifact subspace identification and elimination in cognitive MEG data using time-delayed decorrelation. IEEE Trans Biomed Eng 49:345–354

    Article  PubMed  Google Scholar 

  • Shams N, Alain C, Strother S (2015) Comparison of BCG artifact removal methods for evoked responses in simultaneous EEG-fMRI. J Neurosci Methods 245:137–146

    Article  PubMed  Google Scholar 

  • Shao SY, Shen KQ, Ong CJ, Wilder-Smith EP, Li XP (2009) Automatic EEG artifact removal: a weighted support vector machine approach with error correction. IEEE Trans Biomed Eng 56:336–344

    Article  PubMed  Google Scholar 

  • Sun L, Hinrichs H (2009) Simultaneously recorded EEG-fMRI: removal of gradient artifacts by subtraction of head movement related average artifact waveforms. Hum Brain Mapp 30:3361–3377

    Article  PubMed  Google Scholar 

  • Sun L, Grutzner C, Bolte S, Wibral M, Tozman T, Schlitt S, Poustka F, Singer W, Freitag CM, Uhlhaas PJ (2012) Impaired gamma-band activity during perceptual organization in adults with autism spectrum disorders: evidence for dysfunctional network activity in frontal-posterior cortices. J Neurosci 32:9563–9573

    Article  CAS  PubMed  Google Scholar 

  • Tal I, Abeles M (2013) Cleaning MEG artifacts using external cues. J Neurosci Methods 217:31–38

    Article  CAS  PubMed  Google Scholar 

  • Taulu S, Kajola M, Simola J (2004) Suppression of interference and artifacts by the signal space separation method. Brain Topogr 16:269–275

    Article  PubMed  Google Scholar 

  • Uusitalo MA, Ilmoniemi RJ (1997) Signal-space projection method for separating MEG or EEG into components. Med Biol Eng Comput 35:135–140

    Article  CAS  PubMed  Google Scholar 

  • Welch PD (1967) The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust 15(2):17–20

    Article  Google Scholar 

Download references

Acknowledgments

Experimental data were collected while Dr. -Ing. Sun worked in Max Planck Institute for brain research, Frankfurt am Main, Germany. This work was supported in part by the National Institutes of Health Grant NS037462 and by The National Center for Research Resources (P41RR14075).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Limin Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, L., Ahlfors, S.P. & Hinrichs, H. Removing Cardiac Artefacts in Magnetoencephalography with Resampled Moving Average Subtraction. Brain Topogr 29, 783–790 (2016). https://doi.org/10.1007/s10548-016-0513-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-016-0513-3

Keywords

Navigation