Skip to main content

Novel Noise Reduction Methods

  • Reference work entry
  • First Online:
Magnetoencephalography

Abstract

Magnetoencephalography (MEG) is a noninvasive neuroimaging tool that offers a combination of excellent temporal and good spatial resolution, provided that the acquired signals have a high-enough signal-to-noise ratio. This requirement is often compromised as MEG signals are very weak and often masked by interfering signals from environmental noise sources present at most MEG sites. Even more challenging interference is encountered if the subject carries any magnetic material attached to the body, which is sometimes inevitable in clinical settings, e.g., due to therapeutic stimulators. Therefore, to enable reliable data analysis, it is very important to reduce the contribution of noise in MEG signals as efficiently as possible. In this chapter, we review the basic characteristics of MEG signals, give a short review on traditional approaches to suppress noise, and describe some examples of modern noise reduction methods. Specifically, we emphasize the usefulness of advanced mathematical algorithms applied on the multichannel MEG data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adjamian P, Worthen S, Hillebrand A, Furlong P, Chizh B, Hobson A, Aziz Q, Barnes G (2009) Effective electromagnetic noise cancellation with beamformers and synthetic gradiometry in shielded and partly shielded environments. J Neurosci Methods 178(1):120–127

    Article  CAS  PubMed  Google Scholar 

  • Ahonen A, Hämäläinen M, Ilmoniemi R, Kajola M, Knuutila J, Simola J, Vilkman V (1993) Sampling theory for neuromagnetic detector arrays. IEEE Trans Biomed Eng 40:859–869

    Article  CAS  PubMed  Google Scholar 

  • Airaksinen K, Mäkelä J, Taulu S, Ahonen A, Nurminen J, Schnitzler A, Pekkonen E (2011) Effects of DBS on auditory and somatosensory processing in Parkinson’s disease. Hum Brain Mapp 32(7):1091–1099

    Article  PubMed  Google Scholar 

  • Arfken G (1985) Mathematical methods for physicists. Academic, San Diego

    Google Scholar 

  • Bork J, Hahlbohm HD, Klein R, Schnabel A (2001) The 8-layered magnetically shielded room of the PTB: design and construction. In: Jukka, Risto, Toivo (eds) Biomag2000. Proceedings of the 12th international conference on biomagnetism. Helsinki University of Technology, Espoo, Finland 2000, pp 970–973

    Google Scholar 

  • Cardoso J (1998) Blind signal separation: statistical principles. Proc IEEE 86:2009–2025

    Article  Google Scholar 

  • Carrette E, De Tiège X, Op De Beeck M, De Herdt V, Meurs A, Legros B, Raedt R, Deblaere K, Van Roost D, Bourguignon M, Goldman S, Boon P, Van Bogaert P, Vonck K (2011) Magnetoencephalography in epilepsy patients carrying a vagus nerve stimulator. Epilepsy Res 93(1):44–52

    Article  PubMed  Google Scholar 

  • Chella F, Zappasodi F, Marzetti L, Della Penna S, Pizzella V (2012) Calibration of a multichannel MEG system based on the signal space separation method. Phys Med Biol 57(15):4855–4870

    Article  CAS  PubMed  Google Scholar 

  • Clarke J, Braginski A (eds) (2006) The SQUID handbook. Wiley-VCH, Weinham

    Google Scholar 

  • Cohen D (1968) Magnetoencephalography: evidence of magnetic fields produced by alpha-rhythm current. Science 161:784–786

    Article  CAS  PubMed  Google Scholar 

  • Cohen D (1970) Large-volume conventional magnetic shields. Rev Phys Appl 5:53–58

    Article  Google Scholar 

  • Cohen D (1972) Magnetoencephalography: detection of the brain’s electrical activity with a superconducting magnetometer. Science 175:664–666

    Article  CAS  PubMed  Google Scholar 

  • Cohen D (1979) Magnetic measurement and display of current generators in the brain. Part I: the 2-d detector. In: Proceedings of the 12th international conference on medical and biological engineering. Beilinson Medical Center, Petah Tikva, Israel, Jerusalem, pp 15–16

    Google Scholar 

  • De Cheveigné A (2010) Time-shift denoising source separation. J Neurosci Methods 189(1):113–120

    Article  PubMed  Google Scholar 

  • De Cheveigné A, Simon J (2007) Denoising based on time-shift PCA. J Neurosci Methods 165:297–305

    Article  PubMed  PubMed Central  Google Scholar 

  • De Cheveigné A, Simon J (2008) Sensor noise suppression. J Neurosci Methods 168(1):195–202

    Article  PubMed  Google Scholar 

  • De Tiège X, Op de Beeck M, Funke M, Legros B, Parkkonen L, Goldman S, Van Bogaert P (2008) Recording epileptic activity with MEG in a light-weight magnetic shield. Epilepsy Res 82(2–3):227–231

    Article  PubMed  Google Scholar 

  • Gross J, Baillet S, Barnes G, Henson R, Hillebrand A, Jensen O, Jerbi K, Litvak V, Maess B, Oostenveld R, Parkkonen L, Taylor J, van Wassenhove V, Wibral M, Schoffelen J (2013) Good practice for conducting and reporting MEG research. Neuroimage 65:349–363

    Article  PubMed  Google Scholar 

  • Hall Barbosa C, Andrade Lima E, Bruno A, Ewing A, Wikswo JP Jr (1999) Flux/voltage calibration of axial SQUID gradiometers using an optimization procedure. IEEE Trans App Supercond 9:3523–3526

    Article  Google Scholar 

  • Hämäläinen M, Hari R, Ilmoniemi RJ, Knuutila J, Lounasmaa OV (1993) Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev Mod Phys 65:413–498

    Article  Google Scholar 

  • Helle L, Parkkonen L, Taulu S. Ahonen A (2012) Suppression of uncorrelated sensor noise and artifacts: demonstration with high frequency brain signals. Abstracts of the 18th international conference on biomagnetism, Paris 2012, p 284

    Google Scholar 

  • Hill E (1954) The theory of vector spherical harmonics. Am J Phys 22:211–214

    Article  Google Scholar 

  • Hillebrand A, Pazio P, de Munck J, van Dijk B (2013) Feasibility of clinical magnetoencephalography (MEG) functional mapping in the presence of dental artefacts. Clin Neurophysiol 124(1):107–113

    Article  CAS  PubMed  Google Scholar 

  • Hyvärinen A (1999) Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans Neural Netw 10:626–634

    Article  PubMed  Google Scholar 

  • Hyvärinen A, Ramkumar P, Parkkonen L, Hari R (2010) Independent component analysis of short-time Fourier transforms for spontaneous EEG/MEG analysis. Neuroimage 49:257–271

    Article  PubMed  Google Scholar 

  • Ilmoniemi R (1981) 7-channel SQUID magnetometer for brain research. M.Sc. thesis, Helsinki University of Technology

    Google Scholar 

  • Ilmoniemi R, Williamson S (1987) Analysis of the magnetic alpha rhythm in signal space. Soc Neurosci Abstr 13:46

    Google Scholar 

  • Ilmoniemi R, Williamson S, Hostetler W (1987) New method for the study of spontaneous brain activity, Biomagnetism 87. Tokyo Denki University Press, Tokyo, pp 182–185

    Google Scholar 

  • Jackson J (1999) Classical electrodynamics. Wiley, New York

    Google Scholar 

  • Kakisaka Y, Mosher J, Wang Z, Jin K, Dubarry A, Alexopoulos A, Burgess R (2012) Utility of temporally-extended signal space separation algorithm for magnetic noise from vagal nerve stimulators. Clin Neurophysiol, 124(7)

    Article  PubMed  Google Scholar 

  • Karp E, Parkkonen L, Vigário R (2009) Denoising single trial event related magnetoencephalographic recordings. In: Adali T et al (eds) Independent component analysis and signal separation. Springer, Berlin, pp 427–434

    Chapter  Google Scholar 

  • Kelhä V, Pukki J, Peltonen R, Penttinen A, Ilmoniemi R, Heino J (1982) Design, construction, and performance of a large-volume magnetic shield. IEEE Trans Magn MAG 18:260–270

    Article  Google Scholar 

  • Kiviranta M, Seppä H (1995) DC-SQUID electronics based on the noise cancellation scheme. IEEE Trans Appl Supercond 5(2):2146–2148

    Article  Google Scholar 

  • Kominis I, Kornack T, Allred J, Romalis M (2003) A subfemtotesla multichannel atomic magnetometer. Nat Lond 422:596

    Article  CAS  Google Scholar 

  • Mosher J, Hämäläinen M, Pantazis D, Hui H, Burgess R, Leahy R (2009) Generalized sidelobe canceller for magnetoencephalography arrays. Proc IEEE Int Symp Biomed Imaging 2009:149–152

    PubMed  PubMed Central  Google Scholar 

  • Nenonen J, Montonen J, Katila T (1996) Thermal noise in biomagnetic measurements. Rev Sci Instr 67(6):2397–2405

    Article  CAS  Google Scholar 

  • Nenonen J, Kajola M, Simola J, Ahonen A (2004) Total information of multichannel MEG sensor arrays. Proceedings of the 14th international conference on biomagnetism. Biomag Ltd, Boston, pp 630–631

    Google Scholar 

  • Nenonen J, Taulu S, Kajola M, Ahonen A (2007) Total information extracted from MEG measurements. Int Congr Ser 1300:245–248

    Article  Google Scholar 

  • Nenonen J, Nurminen J, Kičić D, Bikmullina R, Lioumis P, Jousmäki V, Taulu S, Parkkonen L, Putaala M, Kähkönen S (2012) Validation of head movement correction and spatiotemporal signal space separation in magnetoencephalography. Clin Neurophysiol 123(11):2180–2191

    Article  PubMed  Google Scholar 

  • Nurminen J, Taulu S, Okada Y (2008) Effects of sensor calibration, balancing and parametrization on the signal space separation method. Phys Med Biol 53(7):1975–1987

    Article  CAS  PubMed  Google Scholar 

  • Öisjöen F, Schneiderman J, Figueras G, Chukharkin M, Kalabukhov A, Hedström A, Elam M, Winkler D (2012) High-Tc superconducting quantum interference device recordings of spontaneous brain activity: towards high-Tc magnetoencephalography. Appl Phys Lett 100:132601

    Article  CAS  Google Scholar 

  • Ornelas P, Bruno A, Hall Barbosa C, Andrade Lima E, Costa Ribeiro P (2003) A survey of calibration procedures for SQUID gradiometers. Supercond Sci Technol 16:427–431

    Article  CAS  Google Scholar 

  • Pannetier M, Fermon C, Goff G, Simola J, Kerr E (2004) Femtotesla magnetic field measurement with magnetoresistive sensors. Science 304:1648–1650

    Article  CAS  PubMed  Google Scholar 

  • Pannetier-Lecoeur M, Parkkonen L, Sergeeva-Chollet N, Polovy H, Fermon C, Fowley C (2011) Magnetocardiography with sensors based on giant magnetoresistance. Appl Phys Lett 98:153705

    Article  CAS  Google Scholar 

  • Parkkonen L, Salmelin R (2010) Ch3: Measurements. In: Hansen P, Kringelbach M, Salmelin R (eds) MEG: an introduction to methods. Oxford University Press, New York

    Google Scholar 

  • Parkkonen L, Simola J, Tuoriniemi J, Ahonen A (1999a) An interference suppression system for multichannel magnetic field detector arrays. In: Yoshimoto T et al (eds) Recent advances in biomagnetism: proceedings of the 11th international conference on biomagnetism. Tohoku University Press, pp 13–16

    Google Scholar 

  • Parkkonen L, Simola J, Kajola M, Hämäläinen M, Ahonen A (1999b) Experiments on interference suppression in MEG measurements. Abstracts of the human brain mapping conference, Düsseldorf 1999, #165

    Google Scholar 

  • Parkkonen L, Simola J, Taulu S, Kajola M, Knuutila J, Kojo A, Laine P, Nenonen J, Ahonen A (2006) A light-weight magnetic shield: performance in real MEG measurements. Proceedings of the 15th International Conference on Biomagnetism, Vancouver, BC, Canada, 21–25 Aug 2006. Abstracts of the 15th International Conference on Biomagnetism, Vancouver 2006

    Google Scholar 

  • Patton B, Fitch J (1962) Design of a room-size magnetic shield. J Geophys Res 67(3):1117

    Article  Google Scholar 

  • Ramirez R, Kopell B, Butson C, Hiner B, Baillet S (2011) Spectral signal space projection algorithm for frequency domain MEG and EEG denoising, whitening, and source imaging. Neuroimage 56(1):29–78

    Article  Google Scholar 

  • Ramkumar P, Parkkonen L, Hari R, Hyvärinen A (2012) Characterization of neuromagnetic brain rhythms over time scales of minutes using spatial independent component analysis. Hum Brain Mapp 33:1648–1662

    Article  PubMed  Google Scholar 

  • Särelä J, Valpola H (2005) Denoising source separation. J Mach Learn Res 6:233–327

    Google Scholar 

  • Sekihara K, Nagarajan S, Poeppel D, Marantz A (2004) Performance of an MEG adaptive-beamformer source reconstruction technique in the presence of additive low-rank interference. IEEE Trans Biomed Eng 51(1):90–99

    Article  PubMed  Google Scholar 

  • Simola J (2003) Wall element for magnetically shielded room and magnetically shielded room. Patent WO/2003/059030

    Google Scholar 

  • Simola J, Taulu S (2011) Method for designing coil systems for generation of magnetic fields of desired geometry. PCT/FI2011/050249

    Google Scholar 

  • Simola J, Laine P, Rakkolainen H (2005) Joint structure between the wall elements of a magnetically shielded room. PCT/FI05/00385

    Google Scholar 

  • Tanaka N, Thiele E, Madsen J, Bourgeois B, Stufflebeam S (2009) Magnetoencephalographic analysis in patients with vagus nerve stimulator. Pediatr Neurol 41(5):383–387

    Article  PubMed  PubMed Central  Google Scholar 

  • Tang A, Pearlmutter B, Malaszenko N, Phung D, Reeb B (2002) Independent components of magnetoencephalography: localization. Neural Comput 14:1827–1858

    Article  PubMed  Google Scholar 

  • Taulu S (2000) M.Sc. thesis (in Finnish), Helsinki University of Technology

    Google Scholar 

  • Taulu S (2008) Processing of weak magnetic multichannel signals: the signal space separation method. PhD dissertation, Helsinki University of Technology

    Google Scholar 

  • Taulu S, Hari R (2009) Removal of magnetoencephalographic artifacts with temporal signal-space separation: demonstration with single-trial auditory-evoked responses. Hum Brain Mapp 30(5):1524–1534

    Article  PubMed  Google Scholar 

  • Taulu S, Kajola M (2005) Presentation of electromagnetic multichannel data: the signal space separation method. J Appl Phys 97(124905):1–10

    Google Scholar 

  • Taulu S, Simola J (2006) Spatiotemporal signal space separation method for rejecting nearby interference in MEG measurements. Phys Med Biol 51(7):1759–1768

    Article  CAS  PubMed  Google Scholar 

  • Taulu S, Kajola M, Simola J (2004) Suppression of interference and artifacts by the signal space separation method. Brain Topogr 16(4):269–275

    Article  PubMed  Google Scholar 

  • Taulu S, Simola J, Kajola M (2005) Applications of the signal space separation method. IEEE Trans Sign Proc 53:3359–3372

    Article  Google Scholar 

  • Taulu S, Simola J, Kajola M, Helle L, Ahonen A, Sarvas J (2012) Suppression of uncorrelated sensor noise and artifacts in multichannel MEG data. Abstracts of the 18th international conference on biomagnetism, Paris, 2012, p 285

    Google Scholar 

  • Uusitalo M, Ilmoniemi R (1997) Signal-space projection method for separating MEG or EEG into components. Med Biol Eng Comput 35(2):135–140

    Article  CAS  PubMed  Google Scholar 

  • Vesanen P, Nieminen J, Zevenhoven K, Dabek J, Parkkonen L, Zhdanov A, Luomahaara J, Hassel J, Penttilä J, Simola J, Ahonen A, Mäkelä J, Ilmoniemi R (2012) Hybrid ultra-low-field MRI and magnetoencephalography system based on a commercial whole-head neuromagnetometer. Magn Reson Med 67:1138–1145. (2012 Jul 17, epub ahead of print)

    Article  Google Scholar 

  • Vigario R, Särelä J, Jousmäki V, Hämäläinen M, Oja E (2000) Independent component approach to the analysis of EEG and MEG recordings. IEEE Trans Biomed Eng 47:589–593

    Article  CAS  PubMed  Google Scholar 

  • von Helmholtz H (1853) Ueber einige Gesetze der Vertheilung elektrischer Ströme in körperlichen Leitern, mit Anwendung auf die thierisch-elektrischen Versuche. Ann Phys Chem 89(211–233):353–377

    Article  Google Scholar 

  • Vrba J, Robinson S (2001) Signal processing in magnetoencephalography. Methods 25:249–271

    Article  CAS  PubMed  Google Scholar 

  • Vrba J, Robinson S (2002) SQUID sensor array configurations for magnetoencephalography applications. Supercond Sci Technol 15:R51–R89

    Article  CAS  Google Scholar 

  • Vrba J, Taulu S, Nenonen J, Ahonen A (2010) Signal space separation beamformer. Brain Topogr 23(2):128–133

    Article  PubMed  Google Scholar 

  • Wikswo J (2004) SQUIDs remain best tools for measuring brain’s magnetic field. Phys Today 57(2):15

    Article  Google Scholar 

  • Zimmerman J, Frederick N (1971) Miniature ultrasensitive superconducting magnetic gradiometer and its use in cardiography and other applications. Appl Phys Lett 19:16

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samu Taulu .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Taulu, S., Simola, J., Nenonen, J., Parkkonen, L. (2019). Novel Noise Reduction Methods. In: Supek, S., Aine, C. (eds) Magnetoencephalography. Springer, Cham. https://doi.org/10.1007/978-3-030-00087-5_2

Download citation

Publish with us

Policies and ethics