Skip to main content
Log in

Modeling of the Neurovascular Coupling in Epileptic Discharges

  • Original Paper
  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

Despite the interest in simultaneous EEG-fMRI studies of epileptic spikes, the link between epileptic discharges and their corresponding hemodynamic responses is poorly understood. In this context, biophysical models are promising tools for investigating the mechanisms underlying observed signals. Here, we apply a metabolic-hemodynamic model to simulated epileptic discharges, in part generated by a neural mass model. We analyze the effect of features specific to epileptic neuronal activity on the blood oxygen level dependent (BOLD) response, focusing on the issues of linearity in neurovascular coupling and on the origin of negative BOLD signals. We found both sub- and supra-linearity in simulated BOLD signals, depending on whether one observes the early or the late part of the BOLD response. The size of these non-linear effects is determined by the spike frequency, as well as by the amplitude of the excitatory activity. Our results additionally indicate a minor deviation from linearity at the neuronal level. According to a phase space analysis, the possibility to obtain a negative BOLD response to an epileptic spike depends on the existence of a long and strong excitatory undershoot. Moreover, we strongly suggest that a combined EEG-fMRI modeling approach should include spatial assumptions. The present study is a step towards an increased understanding of the link between epileptic spikes and their BOLD responses, aiming to improve the interpretation of simultaneous EEG-fMRI recordings in epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. This value was chosen heuristically in order to obtain a smoothed histogram

  2. A heuristically chosen value in order to have both enough isolated spikes and some bursting.

  3. When excitation and inhibition obey identical equations, we present only the exc. ones.

References

  • Aubert A, Costalat R (2004) A model of the coupling between brain electrical activity, metabolism, and hemodynamics: application to the interpretation of functional neuroimaging. NeuroImage 17:1162–1181

    Article  Google Scholar 

  • Babajani A, Soltanian-Zadeh H (2006) Integrated MEG/EEG and fMRI model based on neural mass. IEE Trans Biomed Eng 53(7):1794–1801

    Article  Google Scholar 

  • Bagshaw AP, Hawco C, Bénar CG, Kobayashi E, Aghakhani Y, Dubeau F, Pike GB, Gotman J (2005) Analysis of the EEG–fMRI response to prolonged bursts of interictal epileptiform activity. NeuroImage 24:1099–1112

    Article  PubMed  Google Scholar 

  • Bénar CG, Gross DW, Wang Y, Petre V, Pike B, Dubeau F, Gotman J (2002) The bold response to interictal epileptiform discharges. NeuroImage 17:1182–1192

    Article  PubMed  Google Scholar 

  • Bénar CG, Grova C, Kobayashi E, Bagshaw AP, Aghakhani Y, Dubeau F, Gotman J (2006) EEG–fMRI of epileptic spikes: concordance with EEG source localization and intracranial EEG. NeuroImage 30:1161–1170

    Article  PubMed  Google Scholar 

  • Birn RM, Bandettini PA (2005) The effect of stimulus duty cycle and off duration on bold response linearity. NeuroImage 27:70–82

    Article  PubMed  Google Scholar 

  • Blanchard S, Papadopoulo T, Bénar CG, Voges N, Clerc M, Benali H, Warnking J, David O, Wendling F (2011) Relationship between flow and metabolism in bold signals: insights from biophysical models. Brain Topogr 24(1):40–53

    Article  PubMed  Google Scholar 

  • Braitenberg V, Schüz A (1998) Cortex: statistics and geometry of neuronal connectivity. Springer, Berlin

    Google Scholar 

  • Brittar RG, Andermann F, Olivier A, Dubeau F, Dumoulin SO, Pike GB, Reutens DC (1999) Interictal spikes increase cerebral glucose metabolism and blood flow: a PET study. Epilepsia 40(2):170–178

    Article  Google Scholar 

  • Buxton RB, Uludag K, Dubowitz DJ, Liu TT (2004) Modeling the hemodynamic response to brain activation. NeuroImage 23(Suppl 1):220–233

    Article  Google Scholar 

  • Cosandier-Rimélé D, Merlet I, Badier JM, Chauvel P, Wendling F (2008) The neuronal sources of EEG: modeling of simultaneous scalp and intracerebral recordings in epilepsy. Neuroimage 42(1):135–146

    Article  PubMed  Google Scholar 

  • Dale AM, Buckner RL (1997) Selective averaging of rapidly presented individual trials using fMRI. Hum Brain Mapp 5:329–340

    Article  PubMed  CAS  Google Scholar 

  • David O, Friston KJ (2003) A neural mass model for MEG/EEG: coupling and neuronal dynamics. Neuroimage 20(3):1743–1755

    Article  PubMed  Google Scholar 

  • De Curtis M, Avanzini G (2001) Interictal spikes in focal epileptogenesis. Prog Neurobiol 63(5):541–567

    Article  PubMed  CAS  Google Scholar 

  • Deneux T, Faugeras O (2006) Using nonlinear models in fMRI data analysis: model selection and activation detection. NeuroImage 32:1669–1689

    Article  PubMed  Google Scholar 

  • Devor A, Dunn AK, Andermann ML, Ulbert I, Boas DA, Dale AM (2003) Coupling of total hemoglobin concentration, oxygenation, and neural activity in rat somatosensory cortex. Neuron 39:353–359

    Article  PubMed  CAS  Google Scholar 

  • Ebersole JS (1997) Defining epileptogenic foci: past, present, future. J Clin Neurophysiol 14:470–483

    Article  PubMed  CAS  Google Scholar 

  • Ekstrom A (2010) How and when the fMRI signal relates to underlying neural activity: the danger in dissociation. Brain Res Rev 62(2):233–244

    Article  PubMed  Google Scholar 

  • Fernandez JM, Martinsda Silva A, Huiskamp G, Velis DN, Manshanden I, de Munck JC, Lopesda Silva F, Cunha JS (2005) What does an epileptiform spike look like in meg? comparison between coincident EEG and MEG spikes. J Clin Neurosci 22:68–73

    Google Scholar 

  • Friston KJ, Holmes AP, Worsley KJ, Poline JP, Frith CD, Frackowiak RSJ (1995) Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Mapp 2:189–210

    Article  Google Scholar 

  • Glover HG (1999) Deconvolution of impulse responses in event-related bold fMRI. NeuroImage 9:416–429

    Article  PubMed  CAS  Google Scholar 

  • Gotman J, Kobayashi E, Bagshaw AP, Bénar CG, Dubeau F (2006) Combining eeg and fMRI: a multimodal tool for epilepsy research. J Magn Reson Imaging 23:906–920

    Article  PubMed  Google Scholar 

  • Grouiller F, Vercueil L, Krainik A, Segebarth C, Kahane P, David O (2010) Characterization of the hemodynamic modes associated with interictal epileptic activity using a deformable model-based analysis of combined EEG and functional MRI recordings. Hum Brain Mapp 31(8):1157–1173

    PubMed  Google Scholar 

  • Hamandi K, Laufs H, Noth U, Carmichel DW, Duncan JS, Lemieux L (2008) Bold and perfusion changes during epileptic generalized spike wave activity. NeuroImage 39:608–618

    Article  PubMed  Google Scholar 

  • Jacobs J, Hawco C, Kobayashi E, Boor R, LeVan P, Stephani U, Siniatchkin M, Gotman J (2008) Variability of the hemodynamic response as a function of age and frequency of epileptic discharge in children with epilepsy. Neuroimage 40(2):601–614

    Article  PubMed  Google Scholar 

  • Jacobs J, Levan P, Moeller F, Boor R, Stephani U, Gotman J, Siniatchkin M (2009) Hemodynamic changes preceding the interictal EEG spike in patients with focal epilepsy investigated using simultaneous EEG–fMRI. Neuroimage 45(4):1220–1231

    Article  PubMed  Google Scholar 

  • Jansen BH, Rit VG (1995) Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns. Biol Cybern 73:357–366

    Article  PubMed  CAS  Google Scholar 

  • Jirsa VK, Jantzen KJ, Fuchs A, Kelso JA (2002) Spatiotemporal forward solution of the EEG and MEG using network modeling. IEEE Trans Med Imaging 21(5):493–504

    Article  PubMed  Google Scholar 

  • Kisvarday ZF, Eysel UT (1993) Functional and structural topography of horizontal inhibitory connections in cat visual cortex. Europ J Neurosci 5:155–1572

    Article  Google Scholar 

  • Kobayashi E, Bagshaw AP, Grova C, Dubeau F, Gotman J (2006) Negative bold responses to epileptic spikes. Hum Brain Mapp 27:488–497

    Article  PubMed  Google Scholar 

  • Lemieux L, Salek-Haddadi A, Josephs O, Allen P, Toms N, Scott C, Krakow K, Turner R, Fish DR (2001) Event-related fmri with simultaneous and continuous EEG: description of the method and initial case report. NeuroImage 14(3):780–787

    Article  PubMed  CAS  Google Scholar 

  • LeVan P, Tyvaert L, Gotman J (2009) Modulation by EEG features of bold responses to interictal epileptiform discharges. NeuroImage 50(1):15–26

    Article  PubMed  Google Scholar 

  • Liu Z, Rios C, Zhang N, Yang L, Chen W, He B (2010) Linear and nonlinear relationships between visual stimuli, EEG and bold fMRI signals. NeuroImage 50:1054–1066

    Article  PubMed  Google Scholar 

  • Logothetis NK, Paulus J, Augath M, Trinath T, Oeltermann A (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412(12):150–157

    Article  PubMed  CAS  Google Scholar 

  • Logothetis NK, Wandell BA (2004) Interpreting the bold signal. Ann Rev Physiol 66:735–769

    Article  CAS  Google Scholar 

  • McDonald CT, Burkhalter A (1993) Organization of long-range inhibitory connections with rat visual cortex. J Neurosci 13:768–781

    PubMed  CAS  Google Scholar 

  • Meier R, Kumar A, Schulze-Bonhage A, Aertsen A (2007) Comparison of dynamical states of random networks with human EEG. Neurocomputing 70:1843–1847

    Article  Google Scholar 

  • Mirsattari SM, Wang Z, Ives JR, Bihari F, Leung LS, Bartha R, Menon RS (2006) Linear aspects of transformation from interictal epileptic discharges to bold fMRI signals in an animal model of occipital epilepsy. Neuroimage 30:1133–1148

    Article  PubMed  Google Scholar 

  • Mukamel R, Gelbard H, Arieli A, Hasson U, Fried I, Malach R (2005) Coupling between neuronal firing, field potentials, and fmri in human auditory cortex. Science 309(5736):951–954

    Article  PubMed  CAS  Google Scholar 

  • Nemoto M, Sheth S, Guiou M, Pouratian N, Chen JWY, Toga AW (2004) Functional signal- and paradigm-dependent linear relationships between synaptic activity and hemodynamic responses in rat somatosensory cortex. J Neurosci 24(15):3850–3861

    Article  PubMed  CAS  Google Scholar 

  • Nowak R, Santiuste M, Russi A (2009) Toward a definition of MEG spike: parametric description of spikes recorded simultaneously by MEG and depth electrodes. Seizure 18:652–655

    Article  PubMed  Google Scholar 

  • Salek-Haddadi A, Diehl B, Hamandi K, Merschhemke M, Liston A, Friston K, Duncan JS, Fish DR, Lemieux L (2006) Hemodynamic correlates of epileptiform discharges: an EEG–fMRI study of 63 patients with focal epilepsy. Brain Res 1088:148–166

    Article  PubMed  CAS  Google Scholar 

  • Schwartz TH, Bonhoeffer T (2001) In vivo optical mapping of epileptic foci and surround inhibition in ferret cerebral cortex. Nat Med 7(9):1063–1067

    Article  PubMed  CAS  Google Scholar 

  • Sheth SA, Nemoto M, Guiou M, Walker M, Pouratian N, Toga AW (2004) Linear and nonlinear relationships between neuronal activity, oxygen metabolism, and hemodynamic responses. Neuron 42:347–355

    Article  PubMed  CAS  Google Scholar 

  • Shmuel A, Yacoub E, Pfeuffer J, Vande Moortele JF, Adriany G, Hu X, Ugurbil K (2002) Sustained negative bold, blood flow and oxygen consumption responses and its coupling to the positive responses in the human brain. Neuron 36:1195–1210

    Article  PubMed  CAS  Google Scholar 

  • Shmuel A, Augath M, Oeltermann A, Logothetis NK (2006) Negative functional fmri response correlates with decreases in neuronal activity in monkey visual area v1. Nat Neorosci 9(4):569–577

    Article  CAS  Google Scholar 

  • Sotero RC, Trujillo-Barreto NJ (2007) Modeling the role of excitatory and inhibitory activity in the generation of the bold signal. NeuroImage 35:149–165

    Article  PubMed  Google Scholar 

  • Sotero RC, Trujillo-Barreto NJ (2008) Biophysical model for integrating neuronal activity, EEG, fMRI and metabolism. Neuroimage 39:290–309

    Article  PubMed  Google Scholar 

  • Stefanovic B, Warnking JM, Kobayashi E, Bagshaw AP, Hawco C, Dubeau F, Gotman J, Pike GB (2005) Hemodynamic and metabolic responses to activation and deactivation and epileptic discharges. Neuroimage 28:205–215

    Article  PubMed  Google Scholar 

  • Talairach J, Bancaud J, Szikla G (1974) New approach to the neurosurgery of epilepsy. Stereotaxic methodology and therapeutic results. Neurochirurgie 20:11–240

    Google Scholar 

  • Tao JX, Ray A, Hawes-Ebersole S, Ebersole JS (2005) Intracranial EEG substrates of scalp EEG interictal spikes. Epilepsia 46(5):669–676

    Article  PubMed  Google Scholar 

  • Vanzetta I, Flynn C, Ivanov A, Bernard C, Bénar CG (2010) Investigation of linear coupling between single-event blood flow responses and interictal discharges in a model of experimental epilepsy. J Neurophysiol 103(6):3139–3152

    Article  PubMed  Google Scholar 

  • Voges N, Perrinet L (2009) Phase space analysis of networks based on biologically realistic parameters. J Phys Paris 104:51–60

    Google Scholar 

  • Voges N, Schüz A, Aertsen A, Rotter S (2010) A modeler’s view on the spatial structure of intrinsic horizontal connectivity in the neocortex. Prog Neurobiol 92(3):277–292

    Article  PubMed  Google Scholar 

  • Vulliemoz S, Carmichael D, Rosenkranz K, Diehl B, Rodionov R, Walker M, McEvoy A, Lemieux L (2011) Simultaneous intracranial EEG and fMRI of interictal epileptic discharges in humans. Neuroimage 54(1):182–190

    Article  PubMed  Google Scholar 

  • Wendling F, Bellanger JJ, Bartolomei F, Chauvel P (2000) Relevance of nonlinear lumped-parameter models in the analysis of depth-EEG epileptic signals. Biol Cybern 83:367–378

    Article  PubMed  CAS  Google Scholar 

  • Wendling F, Hernandez A, Bellanger JJ, Chauvel P, Bartolomei F (2005) Interictal to ictal transition in human tle: insights from a computational model of intracerebral EEG. J Clin Neurophysiol 22(5):343–356

    PubMed  Google Scholar 

  • Worsley KJ, Friston KJ (1995) Analysis of fMRI time series revisited-again. Neuroimage 2:173–181

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by a postdoctoral fellowship to N.V. from INRIA Sophia-Antipolis Méditerranée within a collaborative project INSERM-INRIA, ’Institute Technologies de la Santé’, and by the French ’Agence Nationale de la Recherche’ (ANR Blanc 2010, MULTIMODEL Project). CGB wants to thank Monique Esclapez for useful discussions. N.V. would like to thank Johannes Hausmann for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Bénar.

Appendix

Appendix

The Metabolic Hemodynamic Model

We first present a brief overview of the metabolic hemodynamic model suggested in Sotero and Trujillo-Barreto (2007), see Fig. 10, right.Footnote 3 Changes in exc. and inh. neuronal activities induce changes in the glucose consumption g e (t), g i (t) (normalized to baseline) by means of linear differential equations where s e (t), s i (t) are glucose consumption inducing signals:

$$ \begin{aligned} \dot{s_e}(t) &= \frac{a_e}{\tau_e} (N_{exc} (t-\delta_e)-1) - \frac{2}{\tau_e} s(t) - \frac{1}{\tau_{e}^2} (g_e(t)-1) \\ \dot{g_e(}t) &= s_e(t). \end{aligned} $$

\(\delta_e\) describes the delay between N exc and g e after stimulus onset, a e represents the efficiency of the glucose consumption response to excitation (amplitude of the impulse response), and τ e gives the time constant (i.e., the width) the impulse response.

Fig. 10
figure 10

Schematic representations of the two models used in this study. Left: generic version of the NMM suggested in Wendling et al. (2000, 2005). Right: MHM introduced in Sotero and Trujillo-Barreto (2007), adapted from their Fig. 1. Note the parallel arrangement of CBF and metabolic processes, and that the CBF dynamics depend only on excitation

The glucose variables were then directly related to the normalized metabolic rates of oxygen for exc. and inh activities m e (t), m i (t), as well as to the total oxygen consumption:

$$ m_e(t) = \frac{2-x(t)}{2-x_0} g_e(t)\hbox { and } m_i(t) = g_i(t) $$

For exc synapses, a fraction x of lactate is lost to the oxidative metabolism occurring in the neuron. This lost is modeled as a sigmoid function with threshold x 0.

The cerebral blood flow f, however, depends only on the exc. neuronal activity:

$$ \begin{aligned} \dot{s_f}(t) &= \epsilon (N_{exc} (t-\delta_f)-1) - \frac{1}{\tau_s} s_f(t) - \frac{f(t)-1}{\tau_f} \\ \dot{f}(t) &= s_f(t), \end{aligned} $$

where s f is some flow-inducing signal, \(\epsilon\) is the efficacy with which N exc causes an increase, τ s is the time constant for signal decay or elimination and τ f is the time constant for autoregulatory feedback from blood flow, while the delay between N exc and CBF responses is given by \(\delta_f. \)

Both the CBF and the total glucose consumption g(t) enter the Balloon model (Buxton et al. 2004). Here, CBF and g(t) are linked (via differential equations) to the normalized (to their values at rest) cerebral blood volume v and its deoxyhemoglobin content q. Knowing the latter two, the BOLD signal is calculated:

$$ \hbox {BOLD}(t) = V_0 (a_1(1-q)-a_2(1-v)) $$
(2)

where V 0 describes the resting venous blood volume fraction, while the parameters a 1, a 2 depend on several experimental and physiological parameters.

The Neural Mass Model

Secondly, let us give a brief overview of the neural mass model in Wendling et al. (2000, 2005), see Fig. 10, left. In “Neural Mass Model as Input for the MHM” section we explained that one population of the NMM consists of one exc. and one inh. sub-population, coupled to each other (via exc. and inh. synapses). Each sub-population is characterized by (i) one (or two) dynamic linear transfer functions that transform average action potential densities into EPSPs and IPSPs, respectively, and by (ii) a static non-linear function (sigmoid function S) that relates the average membrane potential of a sub-population into an average action potential density. The following set of six differential equations governs the model dynamics:

$$ \begin{aligned} \dot{y_0}(t) &= y_3(t) \\ \dot{y_3}(t) &= A\cdot a\cdot S(y_1-y_2) -2\cdot a\cdot y_3(t) - a^2\cdot y_0(t) \\ \dot{y_1}(t) &= y_4(t) \\ \dot{y_4}(t) &= A\cdot a\cdot \{p(t)+C_{ee}\cdot S[C_{ee}\cdot y_0(t)]\} - 2\cdot a\cdot y_4(t)-a^2\cdot y_1(t) \\ \dot{y_2}(t) &= y_5(t) \\ \dot{y_5}(t) &= B\cdot b\cdot \{C_{ei}\cdot S(C_{ie}\cdot y_0(t)\}-2\cdot b\cdot y_5(t)-b^2\cdot y_2(t). \\ \end{aligned} $$

The parameters A and B describe the synaptic gain of exc. and inh. synapses, respectively, while a and b describe their time constants (cf. Table 3). p(t) is the exc. input, representing the average density of afferent action potentials (for C ee etc. see “Neural Mass Model as Input for the MHM” section)

Table 3 List of parameters used in the NMM in order to generate the variable spike shapes and trains S1–S5 in see “Neural Mass Model as Input for the MHM” section (C ee C ei C ie describe the internal connectivity)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voges, N., Blanchard, S., Wendling, F. et al. Modeling of the Neurovascular Coupling in Epileptic Discharges. Brain Topogr 25, 136–156 (2012). https://doi.org/10.1007/s10548-011-0190-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-011-0190-1

Keywords

Navigation