Skip to main content
Log in

Spatial and Frequency Differences of Neuromagnetic Activities Between the Perception of Open- and Closed-class Words

  • Original Paper
  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

The present study investigated the spatial and frequency differences of neuromagnetic activities between the perception of open- and closed-class words by using a 275-channel whole head magnetoencephalography (MEG) system. Two groups of words, 110 open-class and 110 closed-class, were presented visually and auditorily simultaneously. The data of 12 healthy subjects were analyzed with synthetic aperture magnetometry (SAM) which can identify the frequency-dependent volumetric distribution of evoked magnetic fields (EMFs). Both vocabulary classes elicited spectral power changes in the left inferior frontal gyrus (Broca’s area) and left posterior-superior temporal gyrus (Wernicke’s area) within 70–120 Hz. However, the open-class words elicited event-related desynchronization (ERD) while the closed-class words elicited event-related synchronization (ERS) in the two areas within 70–120 Hz. In addition, the open-class words also elicited ERS in the right inferior frontal gyrus, right middle frontal gyrus and right inferior parietal lobe within 1–8 Hz, but the closed-class words only elicited ERD in the right inferior frontal gyrus within 1–8 Hz. Furthermore, there were ERD in the right posterior-superior temporal gyrus within 120–200 Hz for the open-class words, but not for the closed-class words. These results indicate that open- and closed-class words are processed differently in the brain, not only in the anatomical substrates, but also in the frequency range of neuromagnetic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barnes GR, Hillebrand A (2003) Statistical flattening of MEG beamformer images. Hum Brain Mapp 18(1):1–12

    Article  PubMed  Google Scholar 

  • Bastiaansen MC, van der Linden M, ter Keurs M, Dijkstra T, Hagoort P (2005) Theta responses are involved in lexical-semantic retrieval during language processing. J Cogn Neurosci 17(3):530–541

    Article  PubMed  Google Scholar 

  • Bradley DC, Garrett MF (1983) Hemisphere differences in the recognition of closed and open class words. Neuropsychologia 21(2):155–159

    Article  PubMed  CAS  Google Scholar 

  • Brown CM, Hagoort P, ter Keurs M (1999) Electrophysiological signatures of visual lexical processing: open- and closed-class words. JCogn Neurosci 11(3):261–281

    Article  CAS  Google Scholar 

  • Caplan D (2001) Functional neuroimaging studies of syntactic processing. J Psycholinguist Res 30(3):297–320

    Article  PubMed  CAS  Google Scholar 

  • Coltheart M (1981) The MRC psycho-linguistic database. Q J Exp Psychol A 33(7):497–505

    Google Scholar 

  • Embick D, Hackl M, Schaeffer J, Kelepir M, Marantz A (2001) A magnetoencephalographic component whose latency reflects lexical frequency. Brain Res Cogn Brain Res 10(3):345–348

    Article  PubMed  CAS  Google Scholar 

  • Friederici AD (1985) Levels of processing and vocabulary types: evidence from on-line comprehension in normals and agrammatics. Cognition 19(2):133–166

    Article  PubMed  CAS  Google Scholar 

  • Friederici AD, Steinhauer K, Frisch S (1999) Lexical integration: sequential effects of syntactic and semantic information. Mem Cognit 27(3):438–453

    PubMed  CAS  Google Scholar 

  • Friederici AD, Opitz B, von Cramon DY (2000a) Segregating semantic and syntactic aspects of processing in the human brain: an fMRI investigation of different word types. Cereb Cortex 10(7):698–705

    Article  PubMed  CAS  Google Scholar 

  • Friederici AD, Wang Y, Herrmann CS, Maess B, Oertel U (2000b) Localization of early syntactic processes in frontal and temporal cortical areas: a magnetoencephalographic study. Hum Brain Mapp 11(1):1–11

    Article  PubMed  CAS  Google Scholar 

  • Friederici AD, Ruschemeyer SA, Hahne A, Fiebach CJ (2003) The role of left inferior frontal and superior temporal cortex in sentence comprehension: localizing syntactic and semantic processes. Cereb Cortex 13(2):170–177

    Article  PubMed  Google Scholar 

  • Garrett ME (1982) Production of speech: observations from normal and pathological language use. In: Ellis AW (ed) Normality and pathology in cognitive functions. Academic Press, London, pp 19–76

  • Halgren E, Dhond RP, Christensen N, Van Petten C, Marinkovic K, Lewine JD, Dale AM (2002) N400-like magnetoencephalography responses modulated by semantic context, word frequency, and lexical class in sentences. Neuroimage 17(3):1101–1116

    Article  PubMed  Google Scholar 

  • Hari R, Forss N, Avikainen S, Kirveskari E, Salenius S, Rizzolatti G (1998) Activation of human primary motor cortex during action observation: a neuromagnetic study. Proc Natl Acad Sci USA 95(25):15061–15065

    Article  PubMed  CAS  Google Scholar 

  • Hillebrand A, Barnes GR (2005) Beamformer analysis of MEG data. Int Rev Neurobiol 68:149–171

    Article  PubMed  Google Scholar 

  • Kang AM, Constable RT, Gore JC, Avrutin S (1999) An event-related fMRI study of implicit phrase-level syntactic and semantic processing. Neuroimage 10(5):555–561

    Article  PubMed  CAS  Google Scholar 

  • Kucera H, Francis WN (1969) Computational analysis of present-day American English. Int J Am Linguist 35(1):71–75

    Google Scholar 

  • Kutas M, Hillyard SA (1980) Reading senseless sentences: brain potentials reflect semantic incongruity. Science 207(4427):203–205

    Article  PubMed  CAS  Google Scholar 

  • Lopes da Silva F (1991) Neural mechanisms underlying brain waves: from neural membranes to networks. Electroencephalogr Clin Neurophysiol 79(2):81–93

    Article  PubMed  CAS  Google Scholar 

  • McCubbin J, Vrba J, Spear P, McKenzie D, Willis R, Loewen R, Robinson SE, Fife AA (2004) Advanced electronics for the CTF MEG system. Neurol Clin Neurophysiol Nov 30:69 (online journal)

    Google Scholar 

  • Mohr B, Pulvermuller F, Zaidel E (1994) Lexical decision after left, right and bilateral presentation of function words, content words and non-words: evidence for interhemispheric interaction. Neuropsychologia 32(1):105–124

    Article  PubMed  CAS  Google Scholar 

  • Munte TF, Wieringa BM, Weyerts H, Szentkuti A, Matzke M, Johannes S (2001) Differences in brain potentials to open and closed class words: class and frequency effects. Neuropsychologia 39(1):91–102

    Article  PubMed  CAS  Google Scholar 

  • Nakasato N, Fujita S, Seki K, Kawamura T, Matani A, Tamura I, Fujiwara S, Yoshimoto T (1995) Functional localization of bilateral auditory cortices using an MRI-linked whole head magnetoencephalography (MEG) system. Electroencephalogr Clin Neurophysiol 94(3):183–190

    Article  PubMed  CAS  Google Scholar 

  • Neville HJ, Mills DL, Lawson DS (1992) Fractionating language: different neural subsystems with different sensitive periods. Cereb Cortex 2(3):244–258

    Article  PubMed  CAS  Google Scholar 

  • Nichols TE, Holmes AP (2002) Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp 15(1):1–25

    Article  PubMed  Google Scholar 

  • Nobre AC, McCarthy G (1994) Language-related ERPs: scalp distributions and modulations by word type and semantic priming. J Cogn Neurosci 6:233–255

    Google Scholar 

  • Okada Y, Ikeda I, Zhang T, Wang Y (2005) High-frequency signals (>400 hz): a new window in electrophysiological analysis of the somatosensory system. Clin EEG Neurosci 36(4):285–292

    PubMed  CAS  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9(1):97–113

    Article  PubMed  CAS  Google Scholar 

  • Papanicolaou AC, Rogers RL, Baumann S, Saydjari C, Eisenberg HM (1990) Source localization of two evoked magnetic field components using two alternative procedures. Exp Brain Res 80(1):44–48

    Article  PubMed  CAS  Google Scholar 

  • Pfurtscheller G, Aranibar A (1979) Evaluation of event-related desynchronization (ERD) preceding and following voluntary self-paced movement. Electroencephalogr Clin Neurophysiol 46(2):138–146

    Article  PubMed  CAS  Google Scholar 

  • Pfurtscheller G, Lopes da Silva FH (1999) Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol 110(11):1842–1857

    Article  PubMed  CAS  Google Scholar 

  • Pulvermuller F (1995) Agrammatism: behavioral description and neurobiological explanation. J Cogn Neurosci 7:165–181

    Google Scholar 

  • Pulvermuller F (1996) Hebb’s concept of cell assemblies and the psychophysiology of word processing. Psychophysiology 33(4): 317–333

    Article  PubMed  CAS  Google Scholar 

  • Pulvermuller F, Lutzenberger W, Birbaumer N (1995) Electrocortical distinction of vocabulary types. Electroencephalogr Clin Neurophysiol 94(5):357–370

    Article  PubMed  CAS  Google Scholar 

  • Robinson SE (2004) Localization of event-related activity by SAM(erf). Neurol Clin Neurophysiol Nov 30:109 (online journal)

    Google Scholar 

  • Robinson SE, Vrba J (1999) Functional neuroimaging by synthetic aperture magnetometry (SAM). In: Yoshimoto T, Kotani M, Kuriki S (eds) Recent advances in biomagnetism, Tohoku University Press, Sendai, pp 302–305

  • Singh KD, Barnes GR, Hillebrand A, Forde EM, Williams AL (2002) Task-related changes in cortical synchronization are spatially coincident with the hemodynamic response. Neuroimage 16(1):103–114

    Article  PubMed  Google Scholar 

  • Singh KD, Barnes GR, Hillebrand A (2003) Group imaging of task-related changes in cortical synchronisation using nonparametric permutation testing. Neuroimage 19(4):1589–1601

    Article  PubMed  Google Scholar 

  • Small SL, Flores DK, Noll DC (1998) Different neural circuits subserve reading before and after therapy for acquired dyslexia. Brain Lang 62(2):298–308

    Article  PubMed  CAS  Google Scholar 

  • Van Petten C, Kutas M (1991) Influences of semantic and syntactic context on open- and closed-class words. Mem Cognit 19(1):95–112

    PubMed  Google Scholar 

  • Van Petten C, Coulson S, Rubin S, Plante E, Parks M (1999) Time course of word identification and semantic integration in spoken language. J Exp Psychol Learn Mem Cogn 25(2):394–417

    Article  PubMed  Google Scholar 

  • Van Veen BD, Van Drongelen W, Yuchtman M, Suzuki A (1997) Localization of brain electrical activity via linearly constrained minimum variance spatial filtering. IEEE Trans Biomed Eng 44(9):867–880

    Article  PubMed  Google Scholar 

  • Xiang J, Wilson D, Otsubo H, Ishii R, Chuang S (2001) Neuromagnetic spectral distribution of implicit processing of words. NeuroReport 12(18):3923–3927

    Article  PubMed  CAS  Google Scholar 

  • Xiang J, Holowka S, Chuang S (2004) Spatiotemporal analysis of neuromagnetic activation associated with mirror reading. Neurol Clin Neurophysiol Nov 30:90 (online journal)

    Google Scholar 

Download references

Acknowledgements

The present study was supported by a Trustee Grant from Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingying Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Xiang, J., Kotecha, R. et al. Spatial and Frequency Differences of Neuromagnetic Activities Between the Perception of Open- and Closed-class Words. Brain Topogr 21, 75–85 (2008). https://doi.org/10.1007/s10548-008-0060-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-008-0060-7

Keywords

Navigation