Skip to main content

Advertisement

Log in

Integrated MEG/fMRI Model Validated Using Real Auditory Data

  • Original Paper
  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

The main objective of this paper is to present methods and results for the estimation of parameters of our proposed integrated magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI) model. We use real auditory MEG and fMRI datasets from 7 normal subjects to estimate the parameters of the model. The MEG and fMRI data were acquired at different times, but the stimulus profile was the same for both techniques. We use independent component analysis (ICA) to extract activation-related signal from the MEG data. The stimulus-correlated ICA component is used to estimate MEG parameters of the model. The temporal and spatial information of the fMRI datasets are used to estimate fMRI parameters of the model. The estimated parameters have reasonable means and standard deviations for all subjects. Goodness of fit of the real data to our model shows the possibility of using the proposed model to simulate realistic datasets for evaluation of integrated MEG/fMRI analysis methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Almeida R, Stetter M. Modeling the link between functional imaging and neuronal activity: synaptic metabolic demand and spike rates. Neuroimage. 2002;17:1065–79.

    Article  PubMed  Google Scholar 

  • Arthurs OJ, Donovan T, Spiegelhalter DJ, Pickard JD, Boniface SJ. Intracortically distributed neurovascular coupling relationships within and between human somatosensory cortices. Cerebral Cortex. 2007;17(3):661–8.

    Article  PubMed  CAS  Google Scholar 

  • Attwell D, Iadecola C. The neural basis of functional brain imaging signals. Trends Neurosci. 2002;25:621–5.

    Article  PubMed  CAS  Google Scholar 

  • Babajani A, Nekooei MH, Soltanian-Zadeh H. Integrated MEG and fMRI model: synthesis and analysis. Brain Topogr. 2005;18(2): 101–13.

    Article  PubMed  Google Scholar 

  • Babajani A, Soltanian-Zadeh H. Integrated MEG/EEG and fMRI model based on neural masses. IEEE Trans Biomed Eng. 2006;53(9):1794–1801.

    Article  PubMed  Google Scholar 

  • Baillet S, Mosher JC, Leahy RM. Electromagnetic brain mapping. IEEE Signal Proc Mag. 2001;18:14–30.

    Article  Google Scholar 

  • Buxton RB, Wong EC, Frank LR. Dynamics of blood flow and oxygenation changes during brain activation: the balloon mode. Magn Reson Med. 1998;39:855–64.

    Article  PubMed  CAS  Google Scholar 

  • Caesar K, Gold L, Lauritzen M. Context sensitivity of activity dependent increases in cerebral blood flow. Proc Nal Acad Sci USA. 2003;100:4239–44.

    Article  CAS  Google Scholar 

  • Curio G, Mackert B, Burghoff M, Koetiz R, Abraham-Fuchs K, Harer W. Localization of evoked neuromagnetic 600 Hz activity in the cerebral somatosensory system. Electroenceph Clin Neurophysiol. 1994;91:483–7.

    Article  PubMed  CAS  Google Scholar 

  • Dale AM, Halgren E. Spatiotemporal mapping of brain activity by integration of multiple imaging modalities. Curr Opin Neurobiol. 2001;11:202–8.

    Article  PubMed  CAS  Google Scholar 

  • Dale AM, Liu AK, Fischl BR. Dynamic statistical parametric mapping: combining fMRI and MEG for high-resolution imaging of cortical activity. Neuron 2000;26:55–67.

    Article  PubMed  CAS  Google Scholar 

  • Daunizeau J, Grova C, Marrelec G, Mattout J, Jbabdi S, Pélégrini-Issac M, Lina JM, Benali H. Symmetrical event-related EEG/fMRI information fusion in a variational Bayesian framework. Neuroimage. 2007;36(1):69–87.

    Article  PubMed  Google Scholar 

  • Deneux T, Faugeras O. Using nonlinear models in fMRI data analysis: model selection and activation detection. Neuroimage. 2006;32:1669–89.

    Article  PubMed  Google Scholar 

  • Friston KJ, Mechelli A, Turner R, Price CJ. Nonlinear responses in fMRI: the Balloon model, Volterra kernels, and other hemodynamics. Neuroimage. 2000;12:466–77.

    Article  PubMed  CAS  Google Scholar 

  • Gorodnitsky IF, Rao BD. Sparse signal reconstruction from limited data using FOCUSS: a re-weighted minimum norm algorithm. IEEE Trans Sig Proc. 1997;45(3):600–16.

    Article  Google Scholar 

  • Hashimoto I, Mashiko T, Imada T. Somatic evoked high-frequency magnetic oscillations reflect activity of inhibitory interneurons in the human somatosensory cortex. Electroenceph Clin Neurophysiol. 1996;100:189–203.

    Article  PubMed  CAS  Google Scholar 

  • Hämäläinen M, Hari R, Ilmoniemi RJ, Knuutila J, Lounasmaa OV. Magnetoencephalography—theory, instrumentation and applications to noninvasive studies of the working human brain. Rev Modern Phys. 1993;65:413–97.

    Article  Google Scholar 

  • Horwitz B, Poeppel D. How can EEG/MEG and fMRI/PET data be combined? Hum Brain Mapp. 2002;17:1–3.

    Article  PubMed  Google Scholar 

  • Jones M, Hewson-Stoate N, Martindale J, Redgrave P., Mayhew J. Nonlinear coupling of neural activity and CBF in rodent barrel cortex. Neuroimage. 2004;22:956–65.

    Article  PubMed  Google Scholar 

  • Korvenoja A, Aronen HJ, Ilmoniemi RJ. Functional MRI as a constraint in multi-dipole models of MEG data. Int J Bioelectrom. 2001;3(1).

  • Lagarias JC, Reeds JA, Wright MH, Wright PE. Convergence properties of the Nelder–Mead simplex method in low dimensions. SIAM J Optim. 1998;9(1):112–47.

    Article  Google Scholar 

  • Larkum ME, Launey T, Dityatev A, Luscher HR. Integration of excitatory postsynaptic potentials in dendrites of motoneurons of rat spinal cord slice cultures. J Neurophysiol. 1998;80:924–35.

    PubMed  CAS  Google Scholar 

  • Liu AK, Belliveau JW, Dale AM. Spatiotemporal imaging of human brain activity using functional MRI constrained magnetoencephalography data: Monte-Carlo simulations. Proc Natl Acad Sci USA. 1998;95:8945–50.

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Ding L, He B. Integration of EEG/MEG with MRI and fMRI. IEEE Med Biol Mag. 2006;25(4):46–53.

    Article  Google Scholar 

  • Ljung L. System identification: theory for the user. USA: Prentice-Hal PTR; 1999.

    Google Scholar 

  • Martinez-Montes E, Valdes-Sosa PA, Miwakeichi F, Goldman RI, Cohen MS. Concurrent EEG/fMRI analysis by multiway partial least squares. NeuroImage. 2004;22:1023–34.

    Article  PubMed  Google Scholar 

  • Moran JE, Bowyer SM, Tepley N. Multi-resolution FOCUSS source imaging of MEG data. Third International Symposium on Noninvasive Functional Source Imaging within the Human Brain and Heart. Biomedizinische Technik. 2001;46:112–4.

    Google Scholar 

  • Moran JE, Bowyer SM, Tepley N. Multi-resolution FOCUSS: a source imaging technique applied to MEG data. Brain Topogr. 2005;18:1–17.

    Article  PubMed  CAS  Google Scholar 

  • Moran JE, Drake CL, Tepley N. ICA methods for MEG imaging. Neurol Clin Neurophysiol. 2004;72.

  • Nielsen AN, Lauritzen M. Coupling and uncoupling of activity-dependent increases of neuronal activity and blood flow in rat somatosensory cortex. J Physiol. 2001;533:773–85.

    Article  CAS  Google Scholar 

  • Nunez PL, Silberstein RB. On the relationship of synaptic activity to macroscopic measurements: does co-registration of EEG with fMRI make sense? Brain Topogr. 2000;13:79–96.

    Article  PubMed  CAS  Google Scholar 

  • Riera JJ, Aubert E, Iwata K, Kawashima R, Wan X, Ozaki T. Fusing EEG and fMRI based on a bottom-up model: inferring activation and effective connectivity in neural masses. Philos Trans: Biol Sci. 2005;360(1457):1025–41.

    Article  CAS  Google Scholar 

  • Riera JJ, Wan X, Jimenez JC, Kawashima R. Nonlinear local electrovascular coupling. I: a theoretical model. Hum Brain Mapp. 2006;27(6):896–914.

    Article  PubMed  Google Scholar 

  • Riera JJ, Jimenez JC, Wan X, Kawashima R, Ozaki T. Nonlinear local electrovascular coupling. II: from data to neuronal masses. Hum Brain Mapp. 2007;28(4):335–54.

    Article  PubMed  CAS  Google Scholar 

  • Salmelin R. Clinical neurophysiology of language: the MEG approach. Clin Neurophysiol. 2007;118(2):237–54.

    Article  PubMed  Google Scholar 

  • Sotero RC, Trujillo-Barreto NJ. Biophysical model for integrating neuronal activity, EEG, fMRI and metabolism. Neuroimage. 2008;39(1):290–309.

    Article  PubMed  Google Scholar 

  • Talairach J, Tournoux P. Co-planar stereotaxic atlas of the human brain: 3-Dimensional proportional system-an approach to cerebral imaging. New York: Thieme Medical Publishers; 1988.

    Google Scholar 

  • Talavage TM, Sereno MI, Melcher JR, Ledden PJ, Rosen BR, Dale AM. Tonotopic organization in human auditory cortex revealed by progressions of frequency sensitivity. J Neurophysiol. 2004;91(3):1282–96.

    Article  PubMed  Google Scholar 

  • Tong L, Liu R, Soon VC, Huang YF. Indeterminacy and identifiability of blind identification. IEEE Trans Circuits Syst. 1991;38(5):499–509.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Mostafa Ghannad-Rezaie for his help with the fMRI and MEG experiments as well as useful discussions. The authors would greatly appreciate Dr. Micah Murray as well as reviewers of the paper for their useful comments. This work was supported by grants from the University of Tehran, Tehran, Iran, and National Institutes of Health (NIH grant R01EB002450), United States and also supported by NIH/NINDS Grant R01-NS30914.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Babajani-Feremi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Babajani-Feremi, A., Soltanian-Zadeh, H. & Moran, J.E. Integrated MEG/fMRI Model Validated Using Real Auditory Data. Brain Topogr 21, 61–74 (2008). https://doi.org/10.1007/s10548-008-0056-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-008-0056-3

Keywords

Navigation