Skip to main content
Log in

Diurnal Alterations of Brain Electrical Activity in Healthy Adults: A LORETA Study

  • Original Paper
  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

EEG background activity was investigated by low resolution brain electromagnetic tomography (LORETA) to test the diurnal alterations of brain electrical activity in healthy adults. Fourteen right-handed healthy male postgraduate medical students were examined four times (8 a.m., 2 p.m., 8 p.m. and next day 2 p.m.). LORETA was computed to localize generators of EEG frequency components. Comparing the EEG activity between 2 p.m. and 8 a.m., increased activity was seen (1) in theta band (6.5–8 Hz) in the left prefrontal, bilateral mesial frontal and anterior cingulate cortex; (2) in alpha2 band (10.5–12 Hz) in the bilateral precuneus and posterior parietal cortex as well as in the right temporo-occipital cortex; (3) in beta1-2-3 band (12.5–30 Hz) in the right hippocampus and parieto-occipital cortex, left frontal and bilateral cingulate cortex. Comparing the brain activity between 8 p.m. and 8 a.m., (1) midline theta activity disappeared; (2) increased alpha2 band activity was seen in the left hemisphere (including the left hippocampus); and (3) increased beta bands activity was found over almost the whole cortex (including both of hippocampi) with the exception of left temporo-occipital region. There were no significant changes between the background activities of 2 p.m. and next day 2 p.m. Characteristic distribution of increased activity of cortex (no change in delta band, and massive changes in the upper frequency bands) may mirror increasing activation of reticular formation and thus evoked thalamocortical feedback mechanisms as a sign of maintenance of arousal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cacot P, Tesolin B, Sebban C. Diurnal variations of EEG power in healthy adults. Electroenceph Clin Neurophysiol 1995;94: 305–12.

    Article  PubMed  CAS  Google Scholar 

  2. Cummings L, Dane A, Rhodes J, Lynch P, Hughes AM. Diurnal variation in the quantitative EEG in healthy adult volunteers. Br J Clin Pharmacol 2000;50:21–6.

    Article  PubMed  CAS  Google Scholar 

  3. Gundel A, Witthoft H. Circadian rhythm in the EEG of man. Int J Neurosci 1983;19:287–92.

    PubMed  CAS  Google Scholar 

  4. Lafrance C, Dumont M. Diurnal variations in the waking EEG: comparisons with sleep latencies and subjective alertness. J Sleep Res 2000;9:243–8.

    Article  PubMed  CAS  Google Scholar 

  5. Lafrance C, Paquet J, Dumont M. Diurnal time courses in psychomotor performance and waking EEG frequencies. Brain Cogn 2002;48:625–31.

    PubMed  CAS  Google Scholar 

  6. Machleidt W. Die periodik zirkadianer and diurnaler rhythmes in EEG. Z EEG-EMG 1980;11:155–61.

    CAS  Google Scholar 

  7. Gundel A, Hilbig A. Circadian acrophases of powers and frequencies in the waking EEG. Int J Neurosci 1983;22:125–33.

    PubMed  CAS  Google Scholar 

  8. Takii O. Diurnal rhythm in appearance of frontal midline theta activity. Jap J Psychiat Neurol 1986;40:609–15.

    CAS  Google Scholar 

  9. Kubicki TS, Herrmann WM, Fichte K, Freund G. Reflections on the topics: EEG frequency bands and regulation of vigilance. Pharmakopsychiatrie 1979;12:237–45.

    Article  CAS  Google Scholar 

  10. Wilkinson RT, Houghton D. Portable four-choice reaction time test with magnetic tape memory. Behav Res Meth Instrum 1975; 7:441–6.

    Google Scholar 

  11. Higuchi S, Liu Y, Yuasa T, Maeda A, Motohashi Y. Diurnal variations in alpha power density and subjective sleepiness while performing repeated vigilance tasks. Clin Neurophysiol 2001; 112:997–1000.

    Article  PubMed  CAS  Google Scholar 

  12. Aeschbach D, Matthews JR, Postolache TT, Jackson MA, Giesen HA, Wehr TA. Dynamics of the human EEG during prolonged wakefulness: evidence for frequency-specific circadian and homeostatic influences. Neurosci Lett 1997;239:121–4.

    Article  PubMed  CAS  Google Scholar 

  13. Buysse DJ, Nofziger EA, Germain A, Meltzer CC, Wood A, Ombao H, Kupfer DJ, Moore RY. Regional brain glucose metabolism during morning and evening wakefulness in humans: preliminary findings. Sleep 2004;27:1245–54.

    PubMed  Google Scholar 

  14. Nuwer M, Lehmann D, Lopes da Silva F, Matsuoka S, Sutherling W, Vibert JF. IFCN guidelines for topographic and frequency analysis of EEGs and EPs. Report of an IFCN committee. Electroenceph Clin Neurophysiol 1994;91:1–5.

    Article  PubMed  CAS  Google Scholar 

  15. Brown SG, Roy EA, Rohr LE, Snider BR, Bryden PJ. Preference and performance measures of handedness. Brain Cogn 2004;55: 283–5.

    Article  PubMed  Google Scholar 

  16. Trites. Instructions for the # 32025 Grooved Pegboard Test. Lafayette: Lafayette Instrument 1989.

  17. Pascual-Marqui RD, Michel CM, Lehmann D. Low resolution brain electromagnetic tomography: a new method for localizing electrical activity in the brain. Int J Psychophysiol 1994;18:49–65.

    Article  PubMed  CAS  Google Scholar 

  18. Pascual-Marqui RD. A review of methods for solving the EEG inverse problem. Int J Bioelectromagnet 1999;1:75–86.

    Google Scholar 

  19. Talairach J, Tournoux P. Co-planar stereotaxic atlas of the human brain. Stuttgart: Thieme; 1988.

    Google Scholar 

  20. Pascual-Marqui RD, Esslen M, Kochi K, Lehmann D. Functional imaging with low-resolution brain electromagnetic tomography (LORETA): review, new comparisons, and new validation. Jap J Clin Neurophysiol 2002;30:81–94.

    Google Scholar 

  21. Vitacco D, Brandeis D, Pascual-Marqui R, Martin E. Correspondence of event-related potential tomography and functional magnetic resonance imaging during language processing. Hum Brain Map 2002;17:4–12.

    Article  Google Scholar 

  22. Pizzagalli DA, Nitschke JB, Oakes TR, Hendrick AM, Horras KA, Larson CL, Abercrombie HC, Schaefer SM, Koger JV, Benca RM, Pascual-Marqui RD, Davidson RJ. Brain electrical tomography in depression: the importance of symptom severity, anxiety, and melancholic features. Biol Psych 2002;52:73–85.

    Article  Google Scholar 

  23. Dierks T, Jelic V, Pascual-Marqui RD, Wahlund LO, Julin P, Linden DEJ, Maurer K, Winblad B, Nordberg A. Spatial pattern of cerebral glucose metabolism (PET) correlates with localization of intracerebral EEG-generators in Alzheimer’s disease. Clin Neurophysiol 2000;111:1817–1824.

    Article  PubMed  CAS  Google Scholar 

  24. Lantz G, Michel CM, Pascual-Marqui RD, Spinelly L, Seeck M, Seri S, Landis T, Rosen I. Extracranial localization of intracranial interictal epileptiform activity using LORETA (low resolution electromagnetic tomography). Electroencephalogr Clin Neurophysiol 1997;102:414–22.

    Article  PubMed  CAS  Google Scholar 

  25. Seeck M, Lazeyras F, Michel CM, Blanke O, Gericke CA, Ives J, Delavelle J, Golay X, Haenggeli CA, de Tribolet N, Landis T. Non-invasive epileptic focus localization using EEG-triggered functional MRI and electromagnetic tomography. Electroencephalogr Clin Neurophysiol 1998;106:508–12.

    Article  PubMed  CAS  Google Scholar 

  26. Worrell GA, Lagerlund TD, Sharbrough FW, Brinkmann BH, Busacker NE, Cicora KM, O’Brien TJ. Localization of the epileptic focus by low resolution electromagnetic tomography in patients with a lesion demonstrated by MRI. Brain Topogr 2000;12:273–82.

    Article  PubMed  CAS  Google Scholar 

  27. Frei E, Gamma A, Pascual-Marqui RD, Lehmann D, Hell D, Vollenweider FX. Localization of MDMA-induced brain activity in healthy volunteers using low resolution brain electromagnetic tomography (LORETA). Hum Brain Map 2001;14:152–65.

    Article  CAS  Google Scholar 

  28. Holmes AP, Blair RC, Watson JDG, Ford I. Nonparametric analysis of statistic images from functional mapping experiments. J Cereb Blood Flow Metab 1996;16:7–22.

    Article  PubMed  CAS  Google Scholar 

  29. Ishii R, Shinosaki K, Ukai S, Inouye T, Ishihara T, Yoshimine T, Hirabuki N, Asada H, Kihara T, Robinson SE, Takeda M. Medial prefrontal cortex generates frontal midline theta rhythm. Neuroreport 1999;10:675–9.

    Article  PubMed  CAS  Google Scholar 

  30. Mizuki Y, Kajimura N, Kai S, Suetsugi M, Ushijima I, Yamada M. Differential responses to mental stress in high and low anxious normal humans assessed by frontal midline theta activity. Int J Psychophysiol 1992;12:169–75.

    Article  PubMed  CAS  Google Scholar 

  31. Onton J, Delorme A, Makeig S. Frontal midline EEG dynamics during working memory. Neuroimage 2005;27(2):341–56.

    Article  PubMed  Google Scholar 

  32. Basar E, Schurmann M, Sakowitz O. The selectively distributed theta system: functions. Int J Psychophysiol 2001;39:197–212.

    Article  PubMed  CAS  Google Scholar 

  33. Kelley WM, Macrae CN, Wyland CL, Caglar S, Inati S, Heatherton TF. Finding the self? An event-related fMRI study. J Cogn Neurosci 2002;14:785–94.

    Article  PubMed  CAS  Google Scholar 

  34. Nyberg L, Marklund P, Persson J, Cabeze R, Forkstam C, Petersson KM. Common prefrontal activations during working memory, episodic memory and semantic memory. Neuropsychologia 2003;41:371–7.

    Article  PubMed  Google Scholar 

  35. Anderson C, Horne JA. Presleep relaxed wakefulness 7–8 Hz EEG from left frontal region: marker of localised neuropsychological performance? Physiol Behav 2004;81:657–64.

    Article  PubMed  CAS  Google Scholar 

  36. Jensen O, Tesche CD. Frontal theta activity in humans increases with memory load in a working memory task. Eur J Neurosci 2002;15:1395–9.

    Article  PubMed  Google Scholar 

  37. Owen AM. The role of the lateral frontal cortex in mnemonic processing: the contribution of functional neuroimaging. Exp Brain Res 2000;133:33–43.

    Article  PubMed  CAS  Google Scholar 

  38. Arruda JE, Walker KA, Weiler MD, Valentino DA. Validation of a right hemisphere vigilance system as measured by principal component and factor analyzed quantitative electroencephalogram. Int J Psychophysiol 1999;32:119–28.

    Article  PubMed  CAS  Google Scholar 

  39. Lewin JS, Friedman L, Wu D, Miller DA, Thompson LA, Klein SK, Wise AL, Hedera P, Buckley P, Meltzer H, Friedland RP, Duerk JL. Cortical localization of human sustained attention: detection with functional MR using a visual vigilance paradigm. J Comput Assist Tomogr 1996;20:695–701.

    Article  PubMed  CAS  Google Scholar 

  40. Pardo JV, Fox PT, Raichle ME. Localization of a human system for sustained attention by positron emission tomography. Nature 1991;349:61–64.

    Article  PubMed  CAS  Google Scholar 

  41. Paus T, Zatorre RJ, Hofle N, Caramanos Z, Gotman J, Petrides M, Evans AC. Time-related changes in neural systems underlying attention and arousal during the performance of an auditory vigilance task. J Cogn Neurosci 1997;9:392–408.

    Google Scholar 

  42. Saletu B, Anderer P, Saletu-Zyhlarz GM, Gruber D, Metka M, Huber J. Identifying target regions for vigilance improvement under hormone replacement therapy in postmenopausal syndrome patients by means of electroencephalographic tomography. Psychopharmacology 2005;178:389–99.

    Article  PubMed  CAS  Google Scholar 

  43. Weinberg WA, Harper CR. Vigilance and its disorders. Neurol Clin 1993;11:59–78.

    PubMed  CAS  Google Scholar 

  44. Anderer P, Saletu B, Pascual-Marqui RD. Restriction to a limited set of EEG-target variables may lead to misinterpretation of pharmaco-EEG results. Neuropsychobiology 1993;27:112–6.

    Article  PubMed  CAS  Google Scholar 

  45. Petsche H, Kaplan S, von Stein A, Filz O. The possible meaning of the upper and lower alpha frequency ranges for cognitive and creative tasks. Int J Psychophysiol 1997;26:77–97.

    Article  PubMed  CAS  Google Scholar 

  46. Maguire EA, Frith CD. Aging affects the engagement of the hippocampus during autobiographical memory retrieval. Brain 2003;126:1511–23.

    Article  PubMed  Google Scholar 

  47. Shannon BJ, Buckner RL Functional-anatomic correlates of memory retrieval that suggest nontraditional processing roles for multiple distinct regions within posterior parietal cortex. J Neurosci 2004;24:10084–92.

    Article  PubMed  CAS  Google Scholar 

  48. Sheer D. Focused arousal, 40 Hz, and dysfunction. In: Ebert T, editor. Self-regulation of the brain and behavior. Berlin: Springer; 1984. p. 64–84.

  49. Lopes da Silva FH, van Rotterdam A, Storm van Leeuwen W, Tielen AM. Dynamic characteristics of visual evoked potentials in the dog. II. Beta frequency selectivity in evoked potentials and background activity. Electroencephalogr Clin Neurophysiol 1970;29:260–8.

    Article  PubMed  CAS  Google Scholar 

  50. Bouyer JJ, Montaron MF, Vahnee JM, Albert MP, Rougeul A. Anatomical localization of cortical beta rhyhms in cat. Neuroscience 1987;22:863–9.

    Article  PubMed  CAS  Google Scholar 

  51. Huntsman MM, Porcello DM, Homanics GE. Reciprocal inhibitory connections and network synchrony in the mammalian thalamus. Science 1999;283:541–3.

    Google Scholar 

  52. Destexhe A. Spike and wave oscillations based on properties of GABAB receptors. J Neurosci 1998;18:9099–111.

    PubMed  CAS  Google Scholar 

  53. Destexhe A. Can GABAA conductances explain the fast oscillation frequency of absence seizures in rodents. Eur J Neurosci 1999;11(6):2175–81.

    Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Pascual-Marqui at the KEY Institute for Brain-Mind Research, Zurich, Switzerland for making available the LORETA-Key software and his help in the use of this program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marton Toth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toth, M., Kiss, A., Kosztolanyi, P. et al. Diurnal Alterations of Brain Electrical Activity in Healthy Adults: A LORETA Study. Brain Topogr 20, 63–76 (2007). https://doi.org/10.1007/s10548-007-0032-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-007-0032-3

Keywords

Navigation