Skip to main content
Log in

Assessment of the Effects of Geomagnetic and Solar Activity on Bioelectrical Processes in the Human Brain Using a Structural Function

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

The effects of sharp variations in geomagnetic and solar activity at high latitudes on human brain bioelectrical activity were studied using a multichannel EEG structural function. Studies were performed on 10 healthy men aged 19–37 years. EEG recordings were made daily for 25 days. Solar flares of classes C and M occurred during the study period, as did geomagnetic storms of levels G2–G3. A first-order temporal structural function (SF) in eight-dimensional space was calculated from the EEG. The time scales of internal correlations in the multichannel EEG were assessed using the radius of the correlation of the SF, while the spatial correlational structure of the EEG was assessed in terms of the SF asymptote. Variations in geomagnetic activity were found to be reflected more in changes in the correlation radius than the level of the SF asymptote. Perturbing and modulating effects of geomagnetic and solar activity on SF parameters and the SF spectrum were identified. Thus, the SF of the multichannel EEG can be used to evaluate the integral reaction of the brain as a unified system to the actions of heliogeophysical factors and can be used in studies of the effects of the environment on humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. V. Avakyan and N. A. Voronin, “Possible mechanisms of the influence of heliogeophysical activity on the biosphere and weather,” Optich. Zh., 73, No. 4, 78–83 (2006).

    Google Scholar 

  2. N. K. Belisheva, A. N. Popov, N. V. Petukhova, et al., “Qualitative and quantitative assessment of the actions of variations in the geomagnetic field on the functional state of the human brain,” Biofizika, 40, No. 5, 1005–1012 (1995).

  3. D. R. Belov, I. E. Kanunikov, and B. V. Kiselev, “Relationship between spatial synchronization of the human EEG and geomagnetic activity on the day of the experiment,” Ros. Fiziol. Zh., 84, No. 8, 761–774 (1998).

    CAS  Google Scholar 

  4. B. M. Vladimirskii, V. G. Sidyakin, N. A. Temur’yants, et al., Space and Biological Rhythms, Simferopol (1995).

  5. F. P. Dubrov, The Geomagnetic Field and Life, Gidrometeoizdat (1974).

  6. A. Ya. Kaplan, G. J. B’en, S. F. Timashev, et al., “Functional variability in the autocorrelational structure of the EEG,” Zh. Vyssh. Nerv. Deyat., 56, No. 3, 389–392 (2006).

  7. I. E. Kanunikov and B. V. Kiselev, “Effects of the geomagnetic field on the recurrent characteristics of the electroencephalogram,” Ekol. Cheloveka, 12, 47–54 (2014).

    Google Scholar 

  8. A. N. Kolmogorov, “The local structure of turbulence in an incompressible viscous fluid at very high Reynolds numbers,” Dokl. Akad. Nauk. SSSR, 30, No. 4, 299–303 (1941).

    Google Scholar 

  9. V. P. Leutin and E. I. Nikolaeva, Psychophysiological Mechanisms of Adaptation and Functional Asymmetry of the Brain, Nauka, Novosibirsk (1988).

    Google Scholar 

  10. N. I. Moiseeva and V. M. Sysuev, The Temporal Environment and Biological Rhythms, Leningrad (1981).

  11. O. B. Novik and F. A. Smirnov, “Geomagnetic storms decrease the coherence of electrical oscillations in the brain during work using a computer,” Biofizika, 58, No. 3, 554–560 (2013).

  12. A. M. Obukhov, “Structure of the temperature field in turbulent flows,” Izv. Akad. Nauk. SSSR Ser. Geografich. Geofiz., 13, No. 1, 58–69 (1949).

    Google Scholar 

  13. A. S. Presman, Electromagnetic Fields and Living Nature, Nauka, Moscow (1968).

    Google Scholar 

  14. S. A. Prokhorov, and V. V. Grafkin, Structural-Spectral Analysis of Random Processes, Samara Scientific Center, Russian Academy of Sciences (2010).

  15. O. S. Raevskaya, and G. V. Ryzhikov, “Dynamics of interhemisphere asymmetry during changes in the geomagnetic field,” Fiziol. Cheloveka, 10, No. 3, 471–473 (1984).

    Google Scholar 

  16. A. F. Romanenko and G. A. Sergeev, Challenges in the Applied Analysis of Random Processes, Sov. Radio, Moscow (1968).

  17. V. S. Rusinov, O. M. Grindel’, G. N. Baldyreva, and E. M. Vakar, Human Brain Biopotentials, Meditsina, Moscow (1987).

  18. G. A. Sergeev, L. P. Pavlova, and A. F. Romanenko, Statistical Methods for Studies of the Human Electroencephalogram, Nauka, Leningrad (1968).

  19. V. G. Sidyakin, N. A. Temur’yants, A. M. Stashkov, and V. B. Makeev, “Sensitivity of the nervous system to changes in solar activity (literature review),” Zh. Nevrol. Psikhiat., 83, No. 1, 134–137 (1983).

    Google Scholar 

  20. S. I. Soroko, S. S. Bekshaev, N. K. Belisheva, and S. V. Pryanichnikov, “Amplitude-frequency and temporospatial rearrangements of brain bioelectrical activity in humans during strong perturbations of the geomagnetic field,” Vestn. SVNTs DVO Russ. Akad. Nauk., 4, 111–122 (2013).

    Google Scholar 

  21. Yu. A. Kholodov and N. K. Lebedeva, Reactions of the Human Nervous System to Electromagnetic Fields, Nauka, Moscow (1975).

    Google Scholar 

  22. F. Khalberg, G. Kornelissen, L. A. Biti, et al., “Advances of chronomics in 2006–2008. Part 1. Concordance of the rhythms of biosphere and helio-geophysical processes,” Geofiz. Protsess. Biosfera, 8, No. 2, 43–74 (2009).

    Google Scholar 

  23. N. I. Khorseva, “Potential for the use of psychophysiological indicators for assessment of the effects of space physical factors (review),” Geofiz. Protsess. BioSFera, 12, No. 2, 34–56 (2013).

    Google Scholar 

  24. S. Carrubba and A. A. Marino, “The effects of low-frequency environmental-strength electromagnetic fields on brain electrical activity: A critical review of the literature,” Electromagn. Biol. Med., 27, 83–101 (2008).

    Article  PubMed  Google Scholar 

  25. E. Conte, A. Khrennikov, A. Federici, and J. P. Zbilut, “Fractal fluctuations and quantum-like chaos in the brain by analysis of variability of brain waves: A new method based on a fractal variance function and random matrix theory: A link with El Naschie fractal Cantorian space-time and V. Weiss and H. Weiss golden ratio in brain,” Chaos Soliton Fract., 41, No. 5, 2790–2800 (2009).

    Article  Google Scholar 

  26. L. Fischer, G. C. Craig, and C. Kiemle, “Horizontal structure function and vertical correlation analysis of mesoscale water vapor variability observed by airborne lidar,” J. Geophys. Res. Atmos., 118, No. 14, 7579–7590 (2013), doi: https://doi.org/10.1002/jgrd.50588.

    Article  CAS  Google Scholar 

  27. E. Gringarten and C. V. Deutsch, “Teacher’s aide variogram interpretation and modeling,” Math. Geol., 33, No. 4, 507–534 (2001).

    Article  Google Scholar 

  28. B. P. Mulligan, M. D. Hunter, and M. A. Persinger, “Effects of geomagnetic activity and atmospheric power variations on quantitative measures of brain activity: Replication of the Azerbaijani studies,” Adv. Space Res., 45, No. 7, 940–948 (2010).

    Article  Google Scholar 

  29. B. P. Mulligan and M. A. Persinger, “Experimental simulation of the effects of sudden increases in geomagnetic activity upon quantitative measures of human brain activity: validation of correlational studies,” Neurosci. Lett., 516, No. 1, 54–56 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. S. J. Palmer, M. J. Rycroft, and M. Cermack, “Solar and geomagnetic activity, extremely low frequency magnetic and electric fields and human health at the Earth’s surface,” Surv. Geophys., 27, 557–595 (2006), doi: https://doi.org/10.1007/s10712-006-9010-7.

    Article  Google Scholar 

  31. K. S. Saroka, J. M. Caswell, A. Lapointe, and M. A. Persinger, “Greater electroencephalographic coherence between left and right temporal lobe structures during increased geomagnetic activity,” Neurosci. Lett., 560, 126-130 (2014), doi: 10.1016/j.neulet (2013). 11.024.Epub.2013. November 25.

  32. R. Sleimen-Malkoun, D. Perdikis, V. Müller, et al., “Brain dynamics of aging: Multiscale variability of EEG signals at rest and during an auditory oddball task,” eNeuro, 2, No. 3, e0067-14.2015, 1–21 (2015), doi: 10.1523/ENEUR0.0067-14 (2015).

  33. S. F. Timashev, O. Yu. Panischev, Y. S. Polyakov, et al., “Analysis of cross-correlations in electroencephalogram signals as an approach to proactive diagnosis of schizophrenia,” Physica A: Stat. Mech. Its Applic., 391, No. 4, 1179–1194 (2012).

    Article  Google Scholar 

  34. M. Trifonov, “The structure function as new integral measure of spatial and temporal properties of multi-channel EEG,” Brain Informatics, (2016), doi https://doi.org/10.1007/s40708-016-0040-8.

  35. M. Trifonov and V. Rozhkov, “Age-related changes in probability density function of pairwise Euclidean distances between multichannel human EEG signals,” J. Biosci. Med., 2, No. 4, 19–23 (2014), doi: https://doi.org/10.4236/jbm.2014.24004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Rozhkov.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 102, No. 12, pp. 1479–1494, December, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rozhkov, V.P., Trifonov, M.I., Bekshaev, S.S. et al. Assessment of the Effects of Geomagnetic and Solar Activity on Bioelectrical Processes in the Human Brain Using a Structural Function. Neurosci Behav Physi 48, 317–326 (2018). https://doi.org/10.1007/s11055-018-0564-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-018-0564-x

Keywords

Navigation