Skip to main content
Log in

Frequency-Following and Connectivity of Different Visual Areas in Response to Contrast-Reversal Stimulation

  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

The sensitivity of visual areas to different temporal frequencies, as well as the functional connections between these areas, was examined using magnetoencephalography (MEG). Alternating circular sinusoids (0, 3.1, 8.7 and 14 Hz) were presented to foveal and peripheral locations in the visual field to target ventral and dorsal stream structures, respectively. It was hypothesized that higher temporal frequencies would preferentially activate dorsal stream structures. To determine the effect of frequency on the cortical response we analyzed the late time interval (220–770 ms) using a multi-dipole spatio-temporal analysis approach to provide source locations and timecourses for each condition. As an exploratory aspect, we performed cross-correlation analysis on the source timecourses to determine which sources responded similarly within conditions. Contrary to predictions, dorsal stream areas were not activated more frequently during high temporal frequency stimulation. However, across cortical sources the frequency-following response showed a difference, with significantly higher power at the second harmonic for the 3.1 and 8.7 Hz stimulation and at the first and second harmonics for the 14 Hz stimulation with this pattern seen robustly in area V1. Cross-correlations of the source timecourses showed that both low- and high-order visual areas, including dorsal and ventral stream areas, were significantly correlated in the late time interval. The results imply that frequency information is transferred to higher-order visual areas without translation. Despite the less complex waveforms seen in the late interval of time, the cross-correlation results show that visual, temporal and parietal cortical areas are intricately involved in late-interval visual processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • 1 Ahlfors, S.P., Simpson, G.V., Dale, A.M., Belliveau, J.W., Liu, A.K., Korvenoja, A., Virtanen, J., Huotilainen, M., Tootell, R.B., Aronen, H.J. and Ilmoniemi, R.J. Spatiotemporal activity of a cortical network for processing visual motion revealed by MEG and fMRI. J. Neurophysiol., 1999, 82(5): 2545–2555.

    PubMed  CAS  Google Scholar 

  • 2 Ahonen, A.I., Hä mä lä inen, M.S., Kajola, M.J., Knuutila, J.E.T., Laine, P.L., Lounasmaa, O.V., Simola, J.T., Tesche, C.D. and Vilkman, V.A. A 122-channel magnetometer covering the whole head. Proceedings of the Satellite Symposium on Neuroscience and Technology, 14th Annual Conference of the IEEE Eng. Med. Bio. Soc., 1992.

  • 3 Aine, C., Huang, M., Stephen, J. and Christner, R. Multistart algorithms for MEG empirical data analysis reliably characterize locations and time courses of multiple sources. NeuroImage, 2000, 12(2): 159–172.

    Article  PubMed  CAS  Google Scholar 

  • 4 Aine, C.J., Stephen, J.M., Christner, R., Hudson, D. and Best, E. Task relevance enhances early transient and late slow-wave activity of distributed cortical sources. J. Comput. Neurosci., 2003, 15(2): 203–221.

    Article  PubMed  CAS  Google Scholar 

  • 5 Aine, C.J., Supek, S. and George, J.S. Temporal dynamics of visual-evoked neuromagnetic sources: Effects of stimulus parameters and selective attention. Int. J. Neurosci., 1995, 80(1–4): 79–104.

    Article  PubMed  CAS  Google Scholar 

  • 6 Aine, C.J., Supek, S., George, J.S., Ranken, D., Lewine, J., Sanders, J., Best, E., Tiee, W., Flynn, E.R. and Wood, C.C. Retinotopic organization of human visual cortex: Departures from the classical model. Cereb. Cortex, 1996, 6(3): 354–361.

    Article  PubMed  CAS  Google Scholar 

  • 7 Arakawa, K., Tobimatsu, S., Tomoda, H., Kira, J. and Kato, M. The effect of spatial frequency on chromatic and achromatic steady-state visual evoked potentials. Clin. Neurophysiol., 1999, 110(11): 1959–1964.

    Article  PubMed  CAS  Google Scholar 

  • 8 Baizer, J.S., Ungerleider, L.G. and Desimone, R. Organization of visual inputs to the inferior temporal and posterior parietal cortex in macaques. J. Neurosci., 1991, 11(1): 168–190.

    PubMed  CAS  Google Scholar 

  • 9 Bijl, G.K. The visual electrically evoked potential (VEEP): Steady-state responses. Electroencephalogr. Clin. Neurophysiol., 1984, 57(3): 264–269.

    Article  PubMed  CAS  Google Scholar 

  • 10 Boussaoud, D., Desimone, R. and Ungerleider, L.G. Visual topography of area TEO in the macaque. J. Comp. Neurol., 1991, 306(4): 554–575.

    Article  PubMed  CAS  Google Scholar 

  • 11 Boussaoud, D., Ungerleider, L.G. and Desimone, R. Pathways for motion analysis: Cortical connections of the medial superior temporal and fundus of the superior temporal visual areas in the macaque. J. Comp. Neurol., 1990, 296(3): 462–495.

    Article  PubMed  CAS  Google Scholar 

  • 12 Breitmeyer, B.G. and Ganz, L. Implications of sustained and transient channels for theories of visual pattern masking, saccadic suppression, and information processing. Psychol. Rev., 1976, 83(1): 1–36.

    Article  PubMed  CAS  Google Scholar 

  • 13 Diamond, A.L. Latency of the steady state visual evoked potential. Electroencephalogr. Clin. Neurophysiol., 1977, 42(1): 125–127.

    Article  PubMed  CAS  Google Scholar 

  • 14 Endo, S., Toyama, H., Kimura, Y., Ishii, K., Senda, M., Kiyosawa, M. and Uchiyama, A. Mapping visual field with positron emission tomography by mathematical modeling of the retinotopic organization in the calcarine cortex. IEEE Trans. Med. Imaging, 1997, 16(3): 252–260.

    Article  PubMed  CAS  Google Scholar 

  • 15 Engel, A.K., Konig, P., Kreiter, A.K., Schillen, T.B. and Singer, W. Temporal coding in the visual cortex: New vistas on integration in the nervous system. Trends Neurosci., 1992, 15(6): 218–226.

    Article  PubMed  CAS  Google Scholar 

  • 16 Engel, A.K., Konig, P., Kreiter, A.K. and Singer, W. Interhemispheric synchronization of oscillatory neuronal responses in cat visual cortex. Science, 1991, 252(5010): 1177–1179.

    Article  CAS  Google Scholar 

  • 17 Enroth-Cugell, C. and Robson, J. The contrast sensitivity of retinal ganglion cells of the cat. J. Physiol., 1966, 187: 517–551.

    PubMed  CAS  Google Scholar 

  • 18 Fawcett, I.P., Barnes, G.R., Hillebrand, A. and Singh, K.D. The temporal frequency tuning of human visual cortex investigated using synthetic aperture magnetometry. Neuroimage, 2004, 21(4): 1542–1553.

    Article  PubMed  Google Scholar 

  • 19 Felleman, D.J. and Van Essen, D.C. Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex, 1991, 1(1): 1–47.

    Article  PubMed  CAS  Google Scholar 

  • 20 Ferrera, V.P., Nealey, T.A. and Maunsell, J.H. Responses in macaque visual area V4 following inactivation of the parvocellular and magnocellular LGN pathways. J. Neurosci., 1994, 14(4): 2080–2088.

    PubMed  CAS  Google Scholar 

  • 21 Ferster, D. and LeVay, S. The axonal arborizations of lateral geniculate neurons in the striate cortex of the cat. J. Comp. Neurol., 1978, 182(4 Pt 2): 923–944.

    Article  PubMed  CAS  Google Scholar 

  • 22 Fox, P.T. and Raichle, M.E. Stimulus rate determines regional brain blood flow in striate cortex. Ann. Neurol., 1985, 17(3): 303–305.

    Article  PubMed  CAS  Google Scholar 

  • 23 Gray, C.M. The temporal correlation hypothesis of visual feature integration: Still alive and well. Neuron, 1999, 24(1): 31–47, 111–125.

    Article  PubMed  CAS  Google Scholar 

  • 24 Guy, C.N., Ffytche, D.H., Brovelli, A. and Chumillas, J. fMRI and EEG responses to periodic visual stimulation. NeuroImage, 1999, 10(2): 125–148.

    Article  PubMed  CAS  Google Scholar 

  • 25 Herrmann, C.S. Human EEG responses to 1–100/ Hz flicker: Resonance phenomena in visual cortex and their potential correlation to cognitive phenomena. Exp. Brain Res., 2001, 137(3–4): 346–353.

    Article  PubMed  CAS  Google Scholar 

  • 26 Hilgetag, C.C., O'Neill, M.A. and Young, M.P. Indeterminate organization of the visual system. Science, 1996a, 271(5250): 776–777.

    Article  CAS  Google Scholar 

  • 27 Hilgetag, C.-C., O'Neill, M.A. and Young, M.P. Indeterminate organization of the visual system. Science, 1996b, 271: 776–777.

    Article  CAS  Google Scholar 

  • 28 Hou, C., Pettet, M.W., Sampath, V., Candy, T.R. and Norcia, A.M. Development of the spatial organization and dynamics of lateral interactions in the human visual system. J. Neurosci., 2003, 23(25): 8630–8640.

    PubMed  CAS  Google Scholar 

  • 29 Huang, M., Aine, C.J., Supek, S., Best, E., Ranken, D. and Flynn, E.R. Multi-start downhill simplex method for spatio-temporal source localization in magnetoencephalography. Electroencephalogr. Clin. Neurophysiol., 1998, 108(1): 32–44.

    Article  PubMed  CAS  Google Scholar 

  • 30 Huang, M.X., Aine, C., Davis, L., Butman, J., Christner, R., Weisend, M., Stephen, J., Meyer, J., Silveri, J., Herman, M. and Lee, R.R. Sources on the anterior and posterior banks of the central sulcus identified from magnetic somatosensory evoked responses using multistart spatio-temporal localization. Hum. Brain Mapp., 2000, 11(2): 59–76.

    Article  PubMed  CAS  Google Scholar 

  • 31 Huk, A.C. and Heeger, D.J. Task-related modulation of visual cortex. J. Neurophysiol., 2000, 83(6): 3525–3536.

    PubMed  CAS  Google Scholar 

  • 32 Klemm, W.R., Gibbons, W.D., Allen, R.G. and Harrison, J.M. Differences among humans in steady-state evoked potentials: Evaluation of alpha activity, attentiveness and cognitive awareness of perceptual effectiveness. Neuropsychologia, 1982, 20(3): 317–325.

    Article  PubMed  CAS  Google Scholar 

  • 33 Klemm, W.R., Gibbons, W.D., Allen, R.G. and Richey, E.O. Hemispheric lateralization and handedness correlation of human evoked “steady-state” responses to patterned visual stimuli. Physiol. Psychol., 1980, 8(3): 409–416.

    Google Scholar 

  • 34 Klemm, W.R., Goodson, R.A. and Allen, R.G. Steady-state visual evoked responses in anesthetized monkeys. Brain. Res. Bull., 1984, 13(2): 287–291.

    Article  PubMed  CAS  Google Scholar 

  • 35 Levitt, J.B., Kiper, D.C. and Movshon, J.A. Receptive fields and functional architecture of macaque V2. J. Neurophysiol., 1994a, 71(6): 2517–2542.

    CAS  Google Scholar 

  • 36 Levitt, J.B., Yoshioka, T. and Lund, J.S. Intrinsic cortical connections in macaque visual area V2: Evidence for interaction between different functional streams. J. Comp. Neurol., 1994b, 342(4): 551–570.

    Article  CAS  Google Scholar 

  • 37 Liavas, A.P., Moustakides, G.V., Henning, G., Psarakis, E.Z. and Husar, P. A periodogram-based method for the detection of steady-state visually evoked potentials. IEEE Trans. Biomed. Eng., 1998, 45(2): 242–248.

    Article  PubMed  CAS  Google Scholar 

  • 38 Livingstone, M.S. and Hubel, D.H. Psychophysical evidence for separate channels for the perception of form, color, movement, and depth. J. Neurosci., 1987, 7(11): 3416–3468.

    PubMed  CAS  Google Scholar 

  • 39 Malonek, D., Tootell, R.B. and Grinvald, A. Optical imaging reveals the functional architecture of neurons processing shape and motion in owl monkey area MT. Proc. Biol. Sci, 1994, 258(1352): 109–119.

    Article  PubMed  CAS  Google Scholar 

  • 40 Mast, J. and Victor, J.D. Fluctuations of steady-state VEPs: Interaction of driven evoked potentials and the EEG. Electroencephalogr. Clin. Neurophysiol., 1991, 78(5): 389–401.

    Article  PubMed  CAS  Google Scholar 

  • 41 Merigan, W.H. Chromatic and achromatic vision of macaques: Role of the P pathway. J. Neurosci., 1989, 9(3): 776–783.

    PubMed  CAS  Google Scholar 

  • 42 Merigan, W.H. and Maunsell, J.H. How parallel are the primate visual pathways? Annu. Rev. Neurosci., 1993, 16: 369–402.

    Article  PubMed  CAS  Google Scholar 

  • 43 Moradi, F., Liu, L.C., Cheng, K., Waggoner, R.A., Tanaka, K. and Ioannides, A.A. Consistent and precise localization of brain activity in human primary visual cortex by MEG and fMRI. NeuroImage, 2003, 18(3): 595–609.

    Article  PubMed  CAS  Google Scholar 

  • 44 Muller, M.M., Picton, T.W., Valdes-Sosa, P., Riera, J., Teder-Salejarvi, W.A. and Hillyard, S.A. Effects of spatial selective attention on the steady-state visual evoked potential in the 20–28/ Hz range. Cogn. Brain Res., 1998, 6(4): 249–261.

    Article  CAS  Google Scholar 

  • 45 Muller, M.M., Teder, W. and Hillyard, S.A. Magnetoencephalographic recording of steady-state visual evoked cortical activity. Brain Topogr., 1997, 9(3): 163–168.

    Article  PubMed  CAS  Google Scholar 

  • 46 Nakayama, K. and Mackeben, M. Steady state visual evoked potentials in the alert primate. Vision Res., 1982, 22(10): 1261–1271.

    Article  PubMed  CAS  Google Scholar 

  • 47 Okada, Y.C., Kaufman, L., Brenner, D. and Williamson, S.J. Modulation transfer functions of the human visual system revealed by magnetic field measurements. Vision Res., 1982, 22(2): 319–333.

    Article  PubMed  CAS  Google Scholar 

  • 48 Rager, G. and Singer, W. The response of cat visual cortex to flicker stimuli of variable frequency. Eur. J. Neurosci., 1998, 10(5): 1856–1877.

    Article  PubMed  CAS  Google Scholar 

  • 49 Regan, D. Some characteristics of average steady-state and transient responses evoked by modulated light. Electroencephalogr. Clin. Neurophysiol., 1966, 20(3): 238–248.

    Article  PubMed  CAS  Google Scholar 

  • 50 Regan, D. Chromatic adaptation and steady-state evoked potentials. Vision Res., 1968, 8(2): 149–158.

    Article  PubMed  CAS  Google Scholar 

  • 51 Roelfsema, P.R., Engel, A.K., Konig, P. and Singer, W. Visuomotor integration is associated with zero time-lag synchronization among cortical areas. Nature, 1997, 385(6612): 157–161.

    Article  PubMed  CAS  Google Scholar 

  • 52 Rovamo, J. and Virsu, V. An estimation and application of the human cortical magnification factor. Exp. Brain Res., 1979, 37(3): 495–510.

    Article  PubMed  CAS  Google Scholar 

  • 53 Schiller, P.H., Logothetis, N.K. and Charles, E.R. Functions of the colour-opponent and broad-band channels of the visual system. Nature, 1990, 343(6253): 68–70.

    Article  PubMed  CAS  Google Scholar 

  • 54 Schiller, P.H. and Malpeli, J.G. Functional specificity of lateral geniculate nucleus laminae of the rhesus monkey. J. Neurophysiol., 1978, 41(3): 788–797.

    PubMed  CAS  Google Scholar 

  • 55 Seki, K., Nakasato, N., Fujita, S., Hatanaka, K., Kawamura, T., Kanno, A. and Yoshimoto, T. Neuromagnetic evidence that the P100 component of the pattern reversal visual evoked response originates in the bottom of the calcarine fissure. Electroencephalogr. Clin. Neurophysiol., 1996, 100(5): 436–442.

    PubMed  CAS  Google Scholar 

  • 56 Shigeto, H., Tobimatsu, S., Yamamoto, T., Kobayashi, T. and Kato, M. Visual evoked cortical magnetic responses to checkerboard pattern reversal stimulation: A study on the neural generators of N75, P100 and N145. J. Neurol. Sci., 1998, 156(2): 186–194.

    Article  PubMed  CAS  Google Scholar 

  • 57 Shoham, D., Hubener, M., Schulze, S., Grinvald, A. and Bonhoeffer, T. Spatio-temporal frequency domains and their relation to cytochrome oxidase staining in cat visual cortex. Nature, 1997, 385: 529–532.

    Article  PubMed  CAS  Google Scholar 

  • 58 Simon, F. The phase of PVEP in Maxwellian view: Influence of contrast, spatial and temporal frequency. Vision Res., 1992, 32(4): 591–599.

    Article  PubMed  CAS  Google Scholar 

  • 59 Singer, W. Neuronal synchrony: A versatile code for the definition of relations? Neuron, 1999, 24(1): 49–65, 111–125.

    Article  PubMed  CAS  Google Scholar 

  • 60 Singer, W. and Gray, C.M. Visual feature integration and the temporal correlation hypothesis. Annu. Rev. Neurosci., 1995, 18: 555–586.

    Article  PubMed  CAS  Google Scholar 

  • 61 Spileers, W., Maes, H., Lagae, L. and Orban, G.A. Contrast modulated steady-state visual evoked potentials (CMSS VEPs): Recording evoked potentials and related single cell responses in area 17 of the cat. Electroencephalogr. Clin. Neurophysiol., 1994, 92(1): 64–77.

    Article  PubMed  CAS  Google Scholar 

  • 62 Srinivasan, R., Russell, D.P., Edelman, G.M. and Tononi, G. Increased synchronization of neuromagnetic responses during conscious perception. J. Neurosci., 1999, 19(13): 5435–5448.

    PubMed  CAS  Google Scholar 

  • 63 Stephen, J.M., Aine, C.J., Christner, R.F., Ranken, D., Huang, M. and Best, E. Central versus peripheral visual field stimulation results in timing differences in dorsal stream sources as measured with MEG. Vision Res., 2002, 42(28): 3059–3074.

    Article  PubMed  Google Scholar 

  • 64 Tardif, E., Bergeron, A., Lepore, F. and Guillemot, J.P. Spatial and temporal frequency tuning and contrast sensitivity of single neurons in area 21a of the cat. Brain Res., 1996, 716(1–2): 219–223.

    Article  PubMed  CAS  Google Scholar 

  • 65 Theiler, J., Eubank, S., Longtin, A., Galdrikian, B. and Farmer, J. Testing for nonlinearity in time series — The method of Surrogate Data. Physica D, 1992, 58(1–4): 77–94.

    Article  Google Scholar 

  • 66 Thomas, C.G. and Menon, R.S. Amplitude response and stimulus presentation frequency response of human primary visual cortex using BOLD EPI at 4 T. Magn. Reson. Med., 1998, 40(2): 203–209.

    Article  PubMed  Google Scholar 

  • 67 Tobimatsu, S. and Kato, M. The effect of binocular stimulation on each component of transient and steady-state VEPs. Electroencephalogr. Clin. Neurophysiol., 1996, 100(3): 177–183.

    Article  PubMed  CAS  Google Scholar 

  • 68 Tobimatsu, S., Tomoda, H. and Kato, M. Normal variability of the amplitude and phase of steady-state VEPs. Electroencephalogr. Clin. Neurophysiol., 1996, 100(3): 171–176.

    Article  PubMed  CAS  Google Scholar 

  • 69 Tomoda, Y., Tobimatsu, S. and Mitsudome, A. Visual evoked potentials in school children: A comparative study of transient and steady-state methods with pattern reversal and flash stimulation. Clin. Neurophysiol., 1999, 110(1): 97–102.

    Article  PubMed  CAS  Google Scholar 

  • 70 Tononi, G., Srinivasan, R., Russell, D.P. and Edelman, G.M. Investigating neural correlates of conscious perception by frequency-tagged neuromagnetic responses. Proc. Natl. Acad. Sci. USA, 1998, 95(6): 3198–3203.

    Article  PubMed  CAS  Google Scholar 

  • 71 Tootell, R.B., Reppas, J.B., Kwong, K.K., Malach, R., Born, R.T., Brady, T.J., Rosen, B.R. and Belliveau, J.W. Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging. J. Neurosci., 1995, 15(4): 3215–3230.

    PubMed  CAS  Google Scholar 

  • 72 Ungerleider, L. and Mishkin, M. Two cortical visual systems. In: D. Ingle, R. Mansfield and M. Goodale (Eds.), The analysis of visual behavior. MIT Press, Cambridge, 1982: 549–586.

    Google Scholar 

  • 73 Ungerleider, L.G. and Desimone, R. Projections to the superior temporal sulcus from the central and peripheral field representations of V1 and V2. J. Comp. Neurol., 1986, 248(2): 147–163.

    Article  PubMed  CAS  Google Scholar 

  • 74 Vafaee, M.S., Marrett, S., Meyer, E., Evans, A.C. and Gjedde, A. Increased oxygen consumption in human visual cortex: Response to visual stimulation. Acta Neurol. Scand., 1998, 98(2): 85–89.

    Article  PubMed  CAS  Google Scholar 

  • 75 Vafaee, M.S., Meyer, E., Marrett, S., Paus, T., Evans, A.C. and Gjedde, A. Frequency-dependent changes in cerebral metabolic rate of oxygen during activation of human visual cortex. J. Cereb. Blood Flow Metab., 1999, 19(3): 272–277.

    Article  PubMed  CAS  Google Scholar 

  • 76 Van Der Tweel, L.H. and Lunel, H.F. Human Visual Responses to Sinusoidally Modulated Light. Electroencephalogr. Clin. Neurophysiol., 1965, 18: 587–598.

    Article  Google Scholar 

  • 77 Van Essen, D. Functional organization of primate visual cortex. Cereb. Cortex, 1985, 3: 259–329.

    Google Scholar 

  • 78 Van Essen, D. and Maunsell, J.H. Hierarchical organization and functional streams in the visual cortex. Trends Neurosci., 1983, 6: 370–375.

    Article  Google Scholar 

  • 79 Vezoli, J., Falchier, A., Jouve, B., Knoblauch, K., Young, M. and Kennedy, H. Quantitative analysis ofconnectivity in the visual cortex: Extracting function from structure. Neuroscientist, 2004, 10(5): 476–482.

    Article  PubMed  Google Scholar 

  • 80 Wright, M. and Ikeda, H. Processing of spatial and temporal information in the visual system. In: F. Schmitt and F. Worden (Eds.), The neurosciences (Third Study Program). MIT Press, Cambridge, 1974: 115–122.

    Google Scholar 

  • 81 Zeki, S. The response properties of cells in the middle temporal area (area MT) of owl monkey visual cortex. Proc. R Soc. Lond. B Biol. Sci., 1980, 207(1167): 239–248.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia M Stephen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stephen, J.M., Ranken, D.F. & Aine, C.J. Frequency-Following and Connectivity of Different Visual Areas in Response to Contrast-Reversal Stimulation. Brain Topogr 18, 257–272 (2006). https://doi.org/10.1007/s10548-006-0004-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-006-0004-z

Key words

Navigation