Skip to main content

Advertisement

Log in

Modification of a Wavelet-Based Method for Detecting Ebullitive Methane Fluxes in Eddy-Covariance Observations: Application at Two Rice Fields

  • Research Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Ebullition, the release of gas bubbles, is an important pathway of methane emission in many ecosystems, yet its high spatio–temporal variability makes it challenging to quantify. In this work, a methane-flux partitioning method based on scalar similarity in the wavelet domain is applied to eddy-covariance data collected at two flooded rice fields. Inspection of initial results indicates that several modifications are needed for robust ebullition detection. With these modifications, our objectives are to compare the original and modified methods, conduct a sensitivity analysis of the program’s empirical parameters, characterize the importance of ebullition in rice across growth stages, and identify the primary drivers of ebullition. The modified method’s ebullitive fluxes are significantly lower and show lower variance than those from the original method. Furthermore, the two methods produce distinct patterns of diel variation. While partitioning estimates show non-trivial sensitivity to the program parameters, this sensitivity is lower in magnitude than the random error in the ebullitive flux estimates. Ebullitive fluxes make up 9% of the total flux on average, with ebullition increasing in importance as plants develop. Ebullitive fluxes are best predicted by wind speed (negative effect), ecosystem respiration (positive effect), and sensible heat flux (positive effect), suggesting an indirect effect of plant-mediated transport, a link with temperature and methane production, and a potential effect of water column turnover, respectively. In addition to validating the method with independent ebullition observations, we recommend its application at more natural and managed wetlands to improve understanding of this highly variable transport pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Aben RCH, Barros N, Van Donk E, Frenken T, Hilt S, Kazanjian G, Lamers LPM, Peeters ETHM, Roelofs JGM, De Senerpont Domis LN, Stephan S, Velthuis M, Van De Waal DB, Wik M, Thornton BF, Wilkinson J, Delsontro T, Kosten S (2017) Cross continental increase in methane ebullition under climate change. Nat Commun 8:1–8. https://doi.org/10.1038/s41467-017-01535-y

    Article  Google Scholar 

  • Baird AJ, Beckwith CW, Waldron S, Waddington JM (2004) Ebullition of methane-containing gas bubbles from near-surface Sphagnum peat. Geophys Res Lett 31:1–4. https://doi.org/10.1029/2004GL021157

    Article  Google Scholar 

  • Bhattacharyya P, Dash PK, Swain CK, Padhy SR, Roy KS, Neogi S, Berliner J, Adak T, Pokhare SS, Baig MJ, Mohapatra T (2019) Mechanism of plant mediated methane emission in tropical lowland rice. Sci Total Environ 651:84–92. https://doi.org/10.1016/j.scitotenv.2018.09.141

    Article  Google Scholar 

  • De Bruin HAR, Kohsiek W, Van Den Hurk BJJM (1993) A verification of some methods to determine the fluxes of momentum, sensible heat, and water vapour using standard deviation and structure parameter of scalar meteorological quantities. Boundary-Layer Meteorol 63:231–257. https://doi.org/10.1007/BF00710461

    Article  Google Scholar 

  • Butterbach-Bahl K, Papen H, Rennenberg H (1997) Impact of gas transport through rice cultivars on methane emission from rice paddy fields. Plant Cell Environ 20:1175–1183. https://doi.org/10.1046/j.1365-3040.1997.d01-142.x

    Article  Google Scholar 

  • Cade BS, Noon BR (2003) A gentle introduction to quantile regression for ecologists. Front Ecol Environ 1:412–420. https://doi.org/10.1890/1540-9295(2003)001[0412:AGITQR]2.0.CO;2

    Article  Google Scholar 

  • Christensen TR, Panikov N, Mastepanov M, Joabsson A, Stewart A, Öquist M, Sommerkorn M, Reynaud S, Svensson B (2003) Biotic controls on CO2 and CH4 exchange in wetlands - a closed environment study. Biogeochemistry 64:337–354. https://doi.org/10.1023/A:1024913730848

    Article  Google Scholar 

  • Chu H, Baldocchi DD, Poindexter C, Abraha M, Desai AR, Bohrer G, Arain MA, Griffis T, Blanken PD, O’Halloran TL, Thomas RQ, Zhang Q, Burns SP, Frank JM, Christian D, Brown S, Black TA, Gough CM, Law BE, Lee X, Chen J, Reed DE, Massman WJ, Clark K, Hatfield J, Prueger J, Bracho R, Baker JM, Martin TA (2018) Temporal dynamics of aerodynamic canopy height derived from Eddy covariance momentum flux data across North American flux networks. Geophys Res Lett 45:9275–9287. https://doi.org/10.1029/2018GL079306

    Article  Google Scholar 

  • Comas X, Wright W (2012) Heterogeneity of biogenic gas ebullition in subtropical peat soils is revealed using time-lapse cameras. Water Resour Res 48:1–6. https://doi.org/10.1029/2011WR011654

    Article  Google Scholar 

  • Delwiche KB, Knox SH, Malhotra A, Fluet-Chouinard E, McNicol G, Feron S, Ouyang Z, Papale D, Trotta C, Canfora E, Cheah Y-W, Christianson D, Alberto MCR, Alekseychik P, Aurela M, Baldocchi D, Bansal S, Billesbach DP, Bohrer G, Bracho R, Buchmann N, Campbell DI, Celis G, Chen J, Chen W, Chu H, Dalmagro HJ, Dengel S, Desai AR, Detto M, Dolman H, Eichelmann E, Euskirchen E, Famulari D, Friborg T, Fuchs K, Goeckede M, Gogo S, Gondwe MJ, Goodrich JP, Gottschalk P, Graham SL, Heimann M, Helbig M, Helfter C, Hemes KS, Hirano T, Hollinger D, Hörtnagl L, Iwata H, Jacotot A, Jansen J, Jurasinski G, Kang M, Kasak K, King J, Klatt J, Koebsch F, Krauss KW, Lai DYF, Mammarella I, Manca G, Marchesini LB, Matthes JH, Maximon T, Merbold L, Mitra B, Morin TH, Nemitz E, Nilsson MB, Niu S, Oechel WC, Oikawa PY, Ono K, Peichl M, Peltola O, Reba ML, Richardson AD, Riley WJ, Runkle BRK, Ryu Y, Sachs T, Sakabe A, Rey-Sanchez AC, Schuur EA, Schäfer KVR, Sonnentag O, Sparks JP, Stuart-Haëntjens E, Sturtevant C, Sullivan RC, Szutu DJ, Thom JE, Torn MS, Tuittila E-S, Turner J, Ueyama M, Valach AC, Vargas R, Varlagin A, Vazquez-Lule A, Verfaillie JG, Vesala T, Vourlitis GL, Ward EJ, Wille C, Wohlfahrt G, Wong GX, Zhang Z, Zona D, Windham-Myers L, Poulter B, Jackson RB (2021) FLUXNET-CH4: A global, multi-ecosystem dataset and analysis of methane seasonality from freshwater wetlands. Earth Syst Sci Data 13:3607–3689. https://doi.org/10.5194/essd-13-3607-2021

    Article  Google Scholar 

  • Denier Van Der Gon HAC, Van BN, Neue HU, Lantin RS, Aduna JB, Alberto MCK, Wassmann R (1996) Release of entrapped methane from wetland rice fields upon soil drying. Global Biogeochem Cycles 10:1–7. https://doi.org/10.1029/95GB03460

    Article  Google Scholar 

  • Detto M, Katul GG (2007) Simplified expressions for adjusting higher-order turbulent statistics obtained from open path gas analyzers. Boundary-Layer Meteorol 122:205–216. https://doi.org/10.1007/s10546-006-9105-1

    Article  Google Scholar 

  • Detto M, Verfaillie J, Anderson F, Xu L, Baldocchi D (2011) Comparing laser-based open- and closed-path gas analyzers to measure methane fluxes using the eddy covariance method. Agric For Meteorol 151:1312–1324. https://doi.org/10.1016/j.agrformet.2011.05.014

    Article  Google Scholar 

  • Finkelstein PL, Sims PF (2001) Sampling error in eddy correlation flux measurements. J Geophys Res 106:3503–3509. https://doi.org/10.1029/2000JD900731

    Article  Google Scholar 

  • Foken T, Aubinet M, Finnigan JJ, Leclerc MY, Mauder M, Paw U KT (2011) Results of a panel discussion about the energy balance closure correction for trace gases. Bull Am Meteorol Soc 92:ES13–ES18. https://doi.org/10.1175/2011BAMS3130.1

    Article  Google Scholar 

  • Foken T, Wichura B (1996) Tools for quality assessment of surface-based flux measurements. Agric For Meteorol 78:83–105. https://doi.org/10.1016/0168-1923(95)02248-1

    Article  Google Scholar 

  • Forster PM, Storelvmo T, Armour K, Collins W, Dufresne JL, Frame D, Lunt DJ, Mauritsen T, Palmer MD, Watanabe M, Wild M, Zhang H (2021) The Earth’s Energy Budget, Climate Feedbacks, and Climate Sensitivity. In: Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis MI, Huang M, Leitzell K, Lonnoy E, Matthews JBR, Maycock TK, Waterfield T, Yelekçi O, Yu R, Zhou B (eds) Climate change 2021: the physical science basis contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Foufoula-Georgiou E, Kumar P (1994) Wavelet analysis in geophysics: an introduction. Academic Press Inc, San Diego

    Google Scholar 

  • Gao Z, Bian L, Zhou X (2003) Measurements of turbulent transfer in the near-surface layer over a rice paddy in China. J Geophys Res Atmos 108:1–13. https://doi.org/10.1029/2002jd002779

    Article  Google Scholar 

  • Ge HX, Zhang HS, Zhang H, Cai XH, Song Y, Kang L (2018) The characteristics of methane flux from an irrigated rice farm in East China measured using the eddy covariance method. Agric For Meteorol 249:228–238. https://doi.org/10.1016/j.agrformet.2017.11.010

    Article  Google Scholar 

  • Green SM (2013) Ebullition of methane from rice paddies: the importance of furthering understanding. Plant Soil 370:31–34. https://doi.org/10.1007/s11104-013-1790-1

    Article  Google Scholar 

  • Grömping U (2006) Relative importance for linear regression in R: the package relaimpo. J Stat Softw 17:1–27. https://doi.org/10.18637/jss.v017.i01

    Article  Google Scholar 

  • Hill RJ (1989) Implications of Monin-Obukhov similarity theory for scalar quantities. J Atmos Sci 46:2236–2244

    Article  Google Scholar 

  • Hoffmann M, Schulz-Hanke M, Garcia Alba J, Jurisch N, Hagemann U, Sachs T, Sommer M, Augustin J (2017) A simple calculation algorithm to separate high-resolution CH4 flux measurements into ebullition- and diffusion-derived components. Atmos Meas Tech 10:109–118. https://doi.org/10.5194/amt-10-109-2017

    Article  Google Scholar 

  • Horst TW, Semmer SR, Maclean G (2015) Correction of a non-orthogonal, three-component sonic anemometer for flow distortion by transducer shadowing. Boundary-Layer Meteorol 155:371–395. https://doi.org/10.1007/s10546-015-0010-3

    Article  Google Scholar 

  • Hwang Y, Ryu Y, Huang Y, Kim J, Iwata H, Kang M (2020) Comprehensive assessments of carbon dynamics in an intermittently-irrigated rice paddy. Agric For Meteorol 285–286:107933. https://doi.org/10.1016/j.agrformet.2020.107933

    Article  Google Scholar 

  • Irvin J, Zhou S, McNicol G, Lu F, Liu V, Fluet-Chouinard E, Ouyang Z, Knox SH, Lucas-Moffat A, Trotta C, Papale D, Vitale D, Mammarella I, Alekseychik P, Aurela M, Avati A, Baldocchi D, Bansal S, Bohrer G, Campbell DI, Chen J, Chu H, Dalmagro HJ, Delwiche KB, Desai AR, Euskirchen E, Feron S, Goeckede M, Heimann M, Helbig M, Helfter C, Hemes KS, Hirano T, Iwata H, Jurasinski G, Kalhori A, Kondrich A, Lai DY, Lohila A, Malhotra A, Merbold L, Mitra B, Ng A, Nilsson MB, Noormets A, Peichl M, Rey-Sanchez AC, Richardson AD, Runkle BR, Schäfer KV, Sonnentag O, Stuart-Haëntjens E, Sturtevant C, Ueyama M, Valach AC, Vargas R, Vourlitis GL, Ward EJ, Wong GX, Zona D, Alberto MCR, Billesbach DP, Celis G, Dolman H, Friborg T, Fuchs K, Gogo S, Gondwe MJ, Goodrich JP, Gottschalk P, Hörtnagl L, Jacotot A, Koebsch F, Kasak K, Maier R, Morin TH, Nemitz E, Oechel WC, Oikawa PY, Ono K, Sachs T, Sakabe A, Schuur EA, Shortt R, Sullivan RC, Szutu DJ, Tuittila ES, Varlagin A, Verfaillie JG, Wille C, Windham-Myers L, Poulter B, Jackson RB (2021) Gap-filling eddy covariance methane fluxes: comparison of machine learning model predictions and uncertainties at FLUXNET-CH4 wetlands. Agric For Meteorol 308–309:108528. https://doi.org/10.1016/j.agrformet.2021.108528

    Article  Google Scholar 

  • Iwata H, Hirata R, Takahashi Y, Miyabara Y, Itoh M, Iizuka K (2018) Partitioning eddy-covariance methane fluxes from a shallow lake into diffusive and ebullitive fluxes. Boundary-Layer Meteorol 169:413–428. https://doi.org/10.1007/s10546-018-0383-1

    Article  Google Scholar 

  • Kajiura M, Tokida T (2021) Quantifying bubbling emission (ebullition) of methane from a rice paddy using high-time- resolution concentration data obtained during a closed-chamber measurement. J Agric Meteorol 77:245–252. https://doi.org/10.2480/agrmet.D-21-00022

    Article  Google Scholar 

  • Katul G, Goltz SM, Hsieh CI, Cheng Y, Mowry F, Sigmon J (1995) Estimation of surface heat and momentum fluxes using the flux-variance method above uniform and non-uniform terrain. Boundary-Layer Meteorol 74:237–260. https://doi.org/10.1007/BF00712120

    Article  Google Scholar 

  • Kim J, Verma SB, Billesbach DP (1999) Seasonal variation in methane emission from a temperate Phragmites-dominated marsh: effect of growth stage and plant-mediated transport. Glob Chang Biol 5:433–440. https://doi.org/10.1046/j.1365-2486.1999.00237.x

    Article  Google Scholar 

  • Knox SH, Jackson RB, Poulter B, McNicol G, Fluet-Chouinard E, Zhang Z, Hugelius G, Bousquet P, Canadell JG, Saunois M, Papale D, Chu H, Keenan TF, Baldocchi D, Torn MS, Mammarella I, Trotta C, Aurela M, Bohrer G, Campbell DI, Cescatti A, Chamberlain S, Chen J, Chen W, Dengel S, Desai AR, Euskirchen E, Friborg T, Gasbarra D, Goded I, Goeckede M, Heimann M, Helbig M, Hirano T, Hollinger DY, Iwata H, Kang M, Klatt J, Krauss KW, Kutzbach L, Lohila A, Mitra B, Morin TH, Nilsson MB, Niu S, Noormets A, Oechel WC, Peichl M, Peltola O, Reba ML, Richardson AD, Runkle BRK, Ryu Y, Sachs T, Schäfer KVR, Schmid HP, Shurpali N, Sonnentag O, Tang ACI, Ueyama M, Vargas R, Vesala T, Ward EJ, Windham-Myers L, Wohlfahrt G, Zona D (2019) FLUXNET-CH4 synthesis activity: objectives, observations, and future directions. Bull Am Meteorol Soc 100:2607–2632. https://doi.org/10.1175/BAMS-D-18-0268.1

    Article  Google Scholar 

  • Knox SH, Matthes JH, Sturtevant C, Oikawa PY, Verfaillie J, Baldocchi D (2016) Biophysical controls on interannual variability in ecosystem-scale CO2 and CH4 exchange in a California rice paddy. J Geophys Res Biogeosci 121:978–1001. https://doi.org/10.1002/2015JG003247

    Article  Google Scholar 

  • Komiya S, Noborio K, Katano K, Pakoktom T, Siangliw M, Toojinda T (2015) Contribution of ebullition to methane and carbon dioxide emission from water between plant rows in a tropical rice paddy field. Int Sch Res Not 2015:1–8. https://doi.org/10.1155/2015/623901

    Article  Google Scholar 

  • Kormann R, Meixner FX (2001) An analytical footprint model for non-neutral stratification. Boundary-Layer Meteorol 99:207–224. https://doi.org/10.1023/A:1018991015119

    Article  Google Scholar 

  • Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006) World map of the Köppen-Geiger climate classification updated. Meteorol Zeitschrift 15:259–263. https://doi.org/10.1127/0941-2948/2006/0130

    Article  Google Scholar 

  • Mallat SG (1989) A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans Pattern Anal Mach Intell 11:494–513. https://doi.org/10.1109/34.192463

    Article  Google Scholar 

  • Mattson MD, Likens GE (1990) Air pressure and methane fluxes. Nature 347:718–719. https://doi.org/10.1038/347718b0

    Article  Google Scholar 

  • Mauder M, Foken T (2015) Documentation and instruction manual of the Eddy-Covariance software package TK3. Zenodo:10.5281/zenodo.20349 https://doi.org/10.5281/zenodo.20349

  • McDermitt D, Burba G, Xu L, Anderson T, Komissarov A, Riensche B, Schedlbauer J, Starr G, Zona D, Oechel W, Oberbauer S, Hastings S (2011) A new low-power, open-path instrument for measuring methane flux by eddy covariance. Appl Phys B Lasers Opt 102:391–405. https://doi.org/10.1007/s00340-010-4307-0

    Article  Google Scholar 

  • McNicol G, Sturtevant CS, Knox SH, Dronova I, Baldocchi DD, Silver WL (2017) Effects of seasonality, transport pathway, and spatial structure on greenhouse gas fluxes in a restored wetland. Glob Chang Biol 23:2768–2782. https://doi.org/10.1111/gcb.13580

    Article  Google Scholar 

  • Le Mer J, Roger P (2001) Production, oxidation, emission and consumption of methane by soils: a review. Eur J Soil Biol 37:25–50. https://doi.org/10.1016/S1164-5563(01)01067-6

    Article  Google Scholar 

  • Milliman T, Seyednasrollah B, Young AM, Hufkens K, Friedl MA, Frolking S, Richardson AD, Abraha M, Allen DW, Apple M, Arain MA, Baker J, Baker JM, Bernacchi CJ, Bhattacharjee J, Blanken P, Bosch DD, Boughton R, Boughton EH, Brown RF, Browning DM, Brunsell N, Burns SP, Cavagna M, Chu H, Clark PE, Conrad BJ, Cremonese E, Debinski D, Desai AR, Diaz-Delgado R, Duchesne L, Dunn AL, Eissenstat DM, El-Madany T, Ellum DSS, Ernest SM, Esposito A, Fenstermaker L, Flanagan LB, Forsythe B, Gallagher J, Gianelle D, Griffis T, Groffman P, Gu L, Guillemot J, Halpin M, Hanson PJ, Hemming D, Hove AA, Humphreys ER, Jaimes-Hernandez A, Jaradat AA, Johnson J, Keel E, Kelly VR, Kirchner JW, Kirchner PB, Knapp M, Krassovski M, Langvall O, Lanthier G, Maire G l., Magliulo E, Martin TA, McNeil B, Meyer GA, Migliavacca M, Mohanty BP, Moore CE, Mudd R, Munger JW, Murrell ZE, Nesic Z, Neufeld HS, Oechel W, Oishi AC, Oswald WW, Perkins TD, Reba ML, Rundquist B, Runkle BR, Russell ES, Sadler EJ, Saha A, Saliendra NZ, Schmalbeck L, Schwartz MD, Scott RL, Smith EM, Sonnentag O, Stoy P, Strachan S, Suvočarev K, Thom JE, Thomas RQ, den berg AK, Vargas R, Vogel CS, Walker JJ, Webb N, Wetzel P, Weyers S, Whipple A V, Whitham TG, Wohlfahrt G, Wood JD, Yang J, Yang X, Yenni G, Zhang Y, Zhang Q, Zona D, Baldocchi D, Verfaillie J (2019) PhenoCam dataset v2.0: digital camera imagery from the PhenoCam Network, 2000-2018. ORNL DAAC, Oak Ridge, Tennessee, USA. https://doi.org/10.3334/ORNLDAAC/1689

  • Minamikawa K, Yagi K, Tokida T, Sander BO, Wassmann R (2012) Appropriate frequency and time of day to measure methane emissions from an irrigated rice paddy in Japan using the manual closed chamber method. Greenh Gas Meas Manag 2:118–128. https://doi.org/10.1080/20430779.2012.729988

    Article  Google Scholar 

  • Moncrieff J, Clement R, Finnigan J, Meyers T (2005) Averaging, detrending, and filtering of eddy covariance time series. In: Lee X, Massman W, Law B (eds) Handbook of micrometeorology. Kluwer Academic, London, pp 7–31

    Chapter  Google Scholar 

  • Moncrieff JB, Massheder JM, De Bruin H, Elbers J, Friborg T, Heusinkveld B, Kabat P, Scott S, Soegaard H, Verhoef A (1997) A system to measure surface fluxes of momentum, sensible heat, water vapour and carbon dioxide. J Hydrol 188–189:589–611. https://doi.org/10.1016/S0022-1694(96)03194-0

    Article  Google Scholar 

  • Monin AS, Obukhov AM (1954) Basic laws of turbulent mixing in the surface layer of the atmosphere. Tr Geofiz Inst Akad Nauk SSSR 24:163–187

    Google Scholar 

  • Monson R, Baldocchi D (2014) Terrestrial biosphere-atmosphere fluxes. Cambridge University Press, New York

    Book  Google Scholar 

  • Monteith JL, Unsworth MH (2013) Principles of environmental physics: plants, animals, and the atmosphere. Elsevier, Oxford, UK

    Google Scholar 

  • Morin TH, Bohrer G, Frasson RPDM, Naor-Azreli L, Mesi S, Stefanik KC, Schäfer KVR (2014) Environmental drivers of methane fluxes from an urban temperate wetland park. J Geophys Res Biogeosciences 119:2188–2208. https://doi.org/10.1002/2014JG002750

    Article  Google Scholar 

  • Männistö E, Korrensalo A, Alekseychik P, Mammarella I, Peltola O, Vesala T, Tuittila ES (2019) Multi-year methane ebullition measurements from water and bare peat surfaces of a patterned boreal bog. Biogeosciences 16:2409–2421. https://doi.org/10.5194/bg-16-2409-2019

    Article  Google Scholar 

  • Papale D, Reichstein M, Aubinet M, Canfora E, Bernhofer C, Kutsch W, Longdoz B, Rambal S, Valentini R, Vesala T, Yakir D (2006) Towards a standardized processing of net ecosystem exchange measured with eddy covariance technique: algorithms and uncertainty estimation. Biogeosciences 3:571–583. https://doi.org/10.5194/bg-3-571-2006

    Article  Google Scholar 

  • Podgrajsek E, Sahleé E, Rutgersson A (2014) Diurnal cycle of lake methane flux. J Geophys Res Biogeosci 119:236–2481. https://doi.org/10.1002/2013JG002327

    Article  Google Scholar 

  • Poindexter CM, Baldocchi DD, Matthes JH, Knox SH, Variano EA (2016) The contribution of an overlooked process to a wetland’s methane emissions. Geophys Res Lett 43:6276–6284. https://doi.org/10.1002/2016GL068782

    Article  Google Scholar 

  • Poindexter CM, Variano EA (2013) Gas exchange in wetlands with emergent vegetation: the effects of wind and thermal convection at the air-water interface. J Geophys Res Biogeosci 118:1297–1306. https://doi.org/10.1002/jgrg.20099

    Article  Google Scholar 

  • Reavis CW, Suvočarev K, Reba ML, Runkle BRK (2021) Impacts of alternate wetting and drying and delayed flood rice irrigation on growing season evapotranspiration. J Hydrol 596:126080. https://doi.org/10.1016/j.jhydrol.2021.126080

    Article  Google Scholar 

  • Reichstein M, Falge E, Baldocchi D, Papale D, Aubinet M, Berbigier P, Bernhofer C, Buchmann N, Gilmanov T, Granier A, Grünwald T, Havránková K, Ilvesniemi H, Janous D, Knohl A, Laurila T, Lohila A, Loustau D, Matteucci G, Meyers T, Miglietta F, Ourcival JM, Pumpanen J, Rambal S, Rotenberg E, Sanz M, Tenhunen J, Seufert G, Vaccari F, Vesala T, Yakir D, Valentini R (2005) On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Glob Chang Biol 11:1424–1439. https://doi.org/10.1111/j.1365-2486.2005.001002.x

    Article  Google Scholar 

  • Riley WJ, Subin ZM, Lawrence DM, Swenson SC, Torn MS, Meng L, Mahowald NM, Hess P (2011) Barriers to predicting changes in global terrestrial methane fluxes: analyses using CLM4Me, a methane biogeochemistry model integrated in CESM. Biogeosciences 8:1925–1953. https://doi.org/10.5194/bg-8-1925-2011

    Article  Google Scholar 

  • Rogers CW, Brye KR, Norman RJ, Gbur EE, Mattice JD, Parkin TB, Roberts TL (2013) Methane emissions from drill-seeded, delayed-flood rice production on a silt-loam soil in Arkansas. J Environ Qual 42:1059–1069. https://doi.org/10.2134/jeq2012.0502

    Article  Google Scholar 

  • Runkle BRK, Suvočarev K, Reba ML, Reavis CW, Smith SF, Chiu YL, Fong B (2019) Methane emission reductions from the alternate wetting and drying of rice fields detected using the eddy covariance method. Environ Sci Technol 53:671–681. https://doi.org/10.1021/acs.est.8b05535

    Article  Google Scholar 

  • Ruppert J, Thomas C, Foken T (2006) Scalar similarity for relaxed eddy accumulation methods. Boundary-Layer Meteorol 120:39–63. https://doi.org/10.1007/s10546-005-9043-3

    Article  Google Scholar 

  • Santoni GW, Lee BH, Goodrich JP, Varner RK, Crill PM, McManus JB, Nelson DD, Zahniser MS, Wofsy SC (2012) Mass fluxes and isofluxes of methane (CH4) at a New Hampshire fen measured by a continuous wave quantum cascade laser spectrometer. J Geophys Res Atmos 117:1–15. https://doi.org/10.1029/2011JD016960

    Article  Google Scholar 

  • Saunois M, Stavert AR, Poulter B, Bousquet P, Canadell JG, Jackson RB, Raymond PA, Dlugokencky EJ, Houweling S (2020) The global methane budget 2000–2017. Earth Syst Sci Data 12:1561–1623. https://doi.org/10.5194/essd-12-1561-2020

    Article  Google Scholar 

  • Scanlon TM, Albertson JD (2001) Turbulent transport of carbon dioxide and water vapor within a vegetation canopy during unstable conditions: identification of episodes using wavelet analysis. J Geophys Res Atmos 106:7251–7262. https://doi.org/10.1029/2000JD900662

    Article  Google Scholar 

  • Schaller C, Göckede M, Foken T (2017) Flux calculation of short turbulent events - comparison of three methods. Atmos Meas Tech 10:869–880. https://doi.org/10.5194/amt-10-869-2017

    Article  Google Scholar 

  • Schütz H, Seiler W, Conrad R (1989) Processes involved in formation and emission of methane in rice paddies. Biogeochemistry 7:33–53. https://doi.org/10.1007/BF00000896

    Article  Google Scholar 

  • Stamp I, Baird AJ, Heppell CM (2013) The importance of ebullition as a mechanism of methane (CH4) loss to the atmosphere in a northern peatland. Geophys Res Lett 40:2087–2090. https://doi.org/10.1002/grl.50501

    Article  Google Scholar 

  • Stanley KM, Heppell CM, Belyea LR, Baird AJ, Field RH (2019) The importance of CH4 ebullition in floodplain fens. J Geophys Res Biogeosci 124:1750–1763. https://doi.org/10.1029/2018JG004902

    Article  Google Scholar 

  • Suvočarev K, Castellví F, Reba ML, Runkle BRK (2019) Surface renewal measurements of H, λE and CO2 fluxes over two different agricultural systems. Agric For Meteorol 279:107763. https://doi.org/10.1016/j.agrformet.2019.107763

    Article  Google Scholar 

  • Taoka T, Iwata H, Hirata R, Takahashi Y, Miyabara Y, Itoh M (2020) Environmental controls on diffusive and ebullitive methane emission at a sub-daily time scale in the littoral zone of a mid-latitude shallow lake. J Geophys Res Biogeosci. https://doi.org/10.1029/2020JG005753

    Article  Google Scholar 

  • Thomas C, Foken T (2007) Flux contribution of coherent structures and its implications for the exchange of energy and matter in a tall spruce canopy. Boundary-Layer Meteorol 123:317–337. https://doi.org/10.1007/s10546-006-9144-7

    Article  Google Scholar 

  • Tokida T, Cheng W, Adachi M, Matsunami T, Nakamura H, Okada M, Hasegawa T (2013) The contribution of entrapped gas bubbles to the soil methane pool and their role in methane emission from rice paddy soil in free-air [CO2] enrichment and soil warming experiments. Plant Soil 364:131–143. https://doi.org/10.1007/s11104-012-1356-7

    Article  Google Scholar 

  • Tokida T, Miyazaki T, Mizoguchi M, Nagata O, Takakai F, Kagemoto A, Hatano R (2007) Falling atmospheric pressure as a trigger for methane ebullition from peatland. Global Biogeochem Cycles 21:1–8. https://doi.org/10.1029/2006GB002790

    Article  Google Scholar 

  • United Nations Environment Programme and Climate and Clean Air Coalition (2021). Global methane assessment: benefits and costs of mitigating methane emissions. Nairobi: United Nations Environment Programme.

  • Vickers D, Mahrt L (1997) Quality control and flux sampling problems for tower and aircraft data. J Atmos Ocean Technol 14:512–526. https://doi.org/10.1175/1520-0426(1997)014%3c0512:QCAFSP%3e2.0.CO;2

    Article  Google Scholar 

  • Villa JA, Ju Y, Yazbeck T, Waldo S, Wrighton KC, Bohrer G (2021) Ebullition dominates methane fluxes from the water surface across different ecohydrological patches in a temperate freshwater marsh at the end of the growing season. Sci Total Environ 767:144498. https://doi.org/10.1016/j.scitotenv.2020.144498

    Article  Google Scholar 

  • Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, Burovski E, Peterson P, Weckesser W, Bright J, van der Walt SJ, Brett M, Wilson J, Millman KJ, Mayorov N, Nelson ARJ, Jones E, Kern R, Larson E, Carey CJ, Polat İ, Feng Y, Moore EW, VanderPlas J, Laxalde D, Perktold J, Cimrman R, Henriksen I, Quintero EA, Harris CR, Archibald AM, Ribeiro AH, Pedregosa F, van Mulbregt P, Vijaykumar A, Pietro BA, Rothberg A, Hilboll A, Kloeckner A, Scopatz A, Lee A, Rokem A, Woods CN, Fulton C, Masson C, Häggström C, Fitzgerald C, Nicholson DA, Hagen DR, Pasechnik DV, Olivetti E, Martin E, Wieser E, Silva F, Lenders F, Wilhelm F, Young G, Price GA, Ingold GL, Allen GE, Lee GR, Audren H, Probst I, Dietrich JP, Silterra J, Webber JT, Slavič J, Nothman J, Buchner J, Kulick J, Schönberger JL, de Miranda Cardoso JV, Reimer J, Harrington J, Rodríguez JLC, Nunez-Iglesias J, Kuczynski J, Tritz K, Thoma M, Newville M, Kümmerer M, Bolingbroke M, Tartre M, Pak M, Smith NJ, Nowaczyk N, Shebanov N, Pavlyk O, Brodtkorb PA, Lee P, McGibbon RT, Feldbauer R, Lewis S, Tygier S, Sievert S, Vigna S, Peterson S, More S, Pudlik T, Oshima T, Pingel TJ, Robitaille TP, Spura T, Jones TR, Cera T, Leslie T, Zito T, Krauss T, Upadhyay U, Halchenko YO, Vázquez-Baeza Y (2020) SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat Methods 17:261–272. https://doi.org/10.1038/s41592-019-0686-2

    Article  Google Scholar 

  • Waldo S, Beaulieu JJ, Barnett W, Balz DA, Vanni MJ, Williamson T, Walker JT (2021) Temporal trends in methane emissions from a small eutrophic reservoir: the key role of a spring burst. Biogeosciences 18:5291–5311. https://doi.org/10.5194/bg-18-5291-2021

    Article  Google Scholar 

  • Wang C, Lai DYF, Sardans J, Wang W, Zeng C, Peñuelas J (2017) Factors related with CH4 and N2O emissions from a paddy field: clues for management implications. PLoS ONE 12:1–23. https://doi.org/10.1371/journal.pone.0169254

    Article  Google Scholar 

  • Wang G, Xia X, Liu S, Zhang L, Zhang S, Wang J, Xi N, Zhang Q (2021) Intense methane ebullition from urban inland waters and its significant contribution to greenhouse gas emissions. Water Res 189:116654. https://doi.org/10.1016/j.watres.2020.116654

    Article  Google Scholar 

  • Wassmann R, Aulakh MS (2000) The role of rice plants in regulating mechanisms of methane missions. Biol Fertil Soils 31:20–29. https://doi.org/10.1007/s003740050619

    Article  Google Scholar 

  • Wassmann R, Buendia LV, Lantin RS, Bueno CS, Lubigan LA, Umali A, Nocon NN, Javellana AM, Neue HU (2000) Mechanisms of crop management impact on methane emissions from rice fields in Los Baños, Philippines. Nutr Cycl Agroecosyst 58:107–119. https://doi.org/10.1023/A:1009838401699

    Article  Google Scholar 

  • Wassmann R, Neue HU, Alberto MCR, Lantin RS, Bueno C, Llenaresas D, Arah JRM, Papen H, Seiler W, Rennenberg H (1996) Fluxes and pools of methane in wetland rice soils with varying organic inputs. Environ Monit Assess 42:163–173. https://doi.org/10.1007/BF00394048

    Article  Google Scholar 

  • Webb EK, Pearman GI, Leuning R (1980) Correction of flux measurements for density effects due to heat and water vapour transfer. Q J R Meteorol Soc 106:85–100. https://doi.org/10.1002/qj.49710644707

    Article  Google Scholar 

  • Wik M, Crill PM, Varner RK, Bastviken D (2013) Multiyear measurements of ebullitive methane flux from three subarctic lakes. J Geophys Res Biogeosci 118:1307–1321. https://doi.org/10.1002/jgrg.20103

    Article  Google Scholar 

  • Wik M, Thornton BF, Bastviken D, Uhlbäck J, Crill PM (2016) Biased sampling of methane release from northern lakes: a problem for extrapolation. Geophys Res Lett 43:1256–1262. https://doi.org/10.1002/2015GL066501

    Article  Google Scholar 

  • Xu X, Yuan F, Hanson PJ, Wullschleger SD, Thornton PE, Riley WJ, Song X, Graham DE, Song C, Tian H (2016) Reviews and syntheses: four decades of modeling methane cycling in terrestrial ecosystems. Biogeosciences 13:3735–3755. https://doi.org/10.5194/bg-13-3735-2016

    Article  Google Scholar 

  • Zhao J, Zhang M, Xiao W, Jia L, Zhang X, Wang J, Zhang Z, Xie Y, Pu Y, Liu S, Feng Z, Lee X (2021) Large methane emission from freshwater aquaculture ponds revealed by long-term eddy covariance observation. Agric For Meteorol 308–309:108600. https://doi.org/10.1016/j.agrformet.2021.108600

    Article  Google Scholar 

  • Zorzetto E, Peltola O, Grönholm T, Katul GG (2021) Intermittent surface renewals and methane hotspots in natural peatlands. Boundary-Layer Meteorol 180:407–433. https://doi.org/10.1007/s10546-021-00637-x

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the U.S. National Science Foundation CBET division CAREER Award 1752083 and NASA award 80NSSC20K0923 to support Atmospheric Carbon and Transport (ACT)—America, a NASA Earth Venture Suborbital 2 project funded by the NASA Earth Science Division. This research was also supported by the USDA Agricultural Research Service National Program 211. We would like to thank Kosana Suvočarev, Colby Reavis, S. Faye Smith, Yin-Lin Chiu, and Bryant Fong for their assistance with field data collection. We thank the Isbell family and Zero Grade Farms for hosting our team and instrumentation and for managing these fields. Code for the modified partitioning program presented in this study is freely available at https://github.com/richardsonwillp/Wetland-CH4-partition. The datasets generated and analyzed in this study are available from the corresponding author on reasonable request.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Will P. Richardson.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 3278 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Richardson, W.P., Reba, M.L. & Runkle, B.R.K. Modification of a Wavelet-Based Method for Detecting Ebullitive Methane Fluxes in Eddy-Covariance Observations: Application at Two Rice Fields. Boundary-Layer Meteorol 184, 71–111 (2022). https://doi.org/10.1007/s10546-022-00703-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-022-00703-y

Keywords

Navigation