Skip to main content
Log in

Modelling Fractal Turbulent Velocity Spectra: Application to a Dispersion Model of Contaminants in Particular Cases of the Planetary Boundary Layer

  • Research Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The present work develops a model for the turbulent velocity spectra that considers the anomalous behaviour of the turbulent flow. The \(\beta \)-model assumes that the standard Kolmogorov phenomenology is valid only in active turbulence regions, and it proposes an expression for the turbulent velocity spectra in the inertial subrange that is a function of the Hausdorff fractal dimension. From this idea, expressions are obtained for the components of the turbulent velocity spectra that describe the turbulence that exists in geophysical turbulence above the ocean and in very stable situations in the planetary boundary layer where intermittent turbulence occurs. With these spectra, the main parameters used in dispersion models are obtained, that is, the eddy diffusivity and the Lagrangian time scale. The eddy diffusivity is used in an Eulerian dispersion model to estimate the concentration of contaminants in the stable boundary layer. The results obtained are compared with experimental data and other models in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aharony A, Stauffer D (1984) Possible breakdown of the Alexander–Orbach rule at low dimensionalities. Phys Rev Lett 52:2368

    Article  Google Scholar 

  • Bai K, Katz J, Meneveau C (2015) Turbulent flow structure inside a conopy with complex multi-scale elements. Boundary-Layer Meteorol 155:435–457

    Article  Google Scholar 

  • Barad ML (1958) Project Prairie Grass: A Field Program in Diffusion. Project 7657. Atmospheric analysis laboratory, geophysics research directorate, air force Cambridge research center, air research and development command, U.S. Air Force

  • Batchelor GK (1949) Diffusion in a field of homogeneous turbulence. Eulerian analysis. Aust J Sci Res 2:437–450

    Google Scholar 

  • Batista-Tomas AR, Diaz O, Batista-Leyva AJ, Altshuler E (2016) Classification and dynamics of tropical clouds by their fractal dimension. Q J R Meteorol Soc 142:983–988

    Article  Google Scholar 

  • Bershadskii A, Niemela J, Sreenivasan KR (2004) Clusterization and intermittency of temperature fluctuations in turbulent convection. Phys Rev E 69(056):314

    Google Scholar 

  • Carbone M, Bragg AD (2019) Is vortex stretching the main cause of the turbulent energy cascade? J Fluid Mech 883:R2

    Article  Google Scholar 

  • Caughey SJ (1977) Boundary-layer turbulence in stable conditions. Boundary-Layer Meteorol 11:3–14

    Article  Google Scholar 

  • Cava D, Mortarini L, Giostra U, Acevedo O, Katul G (2019) Submeso motions and intermittent turbulence across a nocturnal low-level jet: a self-organized criticality analogy. Boundary-Layer Meteorol 172:17–43

    Article  Google Scholar 

  • Degrazia GA, Anfossi D, Carvalho JC, Mangia C, Tirabassi T, Campos Velho HF (2000) Turbulence parameterisation for pbl dispersion models in all stability conditions. Atmos Environ 34:3575–3583

    Article  Google Scholar 

  • Diethelm K (2010) The analysis of fractional differential equations: an application-oriented exposition using differential operators of Caputo type. Springer-Verlag

  • Frisch U, Sulem PL, Nelkin M (1978) A simple dynamical model of intermittent fully developed turbulence. J Fluid Mech 87:719–736

    Article  Google Scholar 

  • Goulart A, Moreira DM, Carvalho JC, Tirabassi T (2004) Derivation of eddy diffusivities from an unsteady turbulence spectrum. Atmos Environ 38:6121–6124

    Article  Google Scholar 

  • Goulart A, Lazo MJ, Suarez JMS, Moreira DM (2017) Fractional derivative models for a atmospheric dispersion of pollutants. Physica A-Stat Mech Appl 477:9–19

    Article  Google Scholar 

  • Goulart A, Lazo MJ, Suarez JMS (2019) A new parameterization for the concentration flux using fractional calculus to model the dispersion of contaminants in the planetary boundary layer. Physica A-Stat Mech Appl 518:38–49

    Article  Google Scholar 

  • Goulart A, Lazo MJ, Suarez JMS (2020) A deformed derivative model for turbulent diffusion of contaminants in the atmosphere. Physica A-Stat Mech Appl 557(124):847

    Google Scholar 

  • Hanna SR (1981) Lagrangian and Eulerian time-scale relations in the day-time boundary layer. J Appl Meteorol 20:242–249

    Article  Google Scholar 

  • Havlin A, Ben-Avraham D (2002) Diffusion in disordened media. Adv in Phys 51–1(1):187–292

    Article  Google Scholar 

  • Hentschel HGE, Procaccia I (1982) Intermittency exponent in fractally homogeneous turbulence. Phys Rev Lett 49–16:1158–1161

    Article  Google Scholar 

  • Hentschel HGE, Procaccia I (1983) Fractal nature of turbulence as menifested in turbulent diffusion. Phys Rev A 27:R1266

    Article  Google Scholar 

  • Hojstrup J (1981) A simple model for the ajustment of velocity spectra in unstable conditions downstream of an abrupt change in roughness and heat flux. Boundary-Layer Meteorol 21:341–356

    Article  Google Scholar 

  • Hojstrup J (1982) Velocity spectra in the unstable planetary boundary layer. J Atmos Sci 39:2239–2248

    Article  Google Scholar 

  • Holtslag AAM, Moeng CH (1991) Eddy diffusivity and countergradient transport in the convective atmospheric boundary layer. J Atmos Sci 48–14:1690–1698

    Article  Google Scholar 

  • Kaimal JC (1973) Turbulence spectra, lenght scales and structure parameters in the stable surface layer. Boundary-Layer Meteorol 4:289–309

    Article  Google Scholar 

  • Kaimal JC (1978) Horizontal velocity spectra in an unstable surface layer. J Atmos Sci 35:18–24

    Article  Google Scholar 

  • Kaimal JC, Wingaard JC, Izumi Y, Cote OR (1972) Spectral characteristics of surface-layer turbulence. Q J R Meteorol Soc 98:563–589

    Article  Google Scholar 

  • Kaimal JC, Wingaard JC, Haugen DA, Cote OR, Izumi CSJY, Reading CJ (1976) Turbulence structure in the convective boundary layer. J Atmos Sci 33:2152–2169

    Article  Google Scholar 

  • Kolmogorov A (1941) The local structure in incompressible viscous fluid for very large Reynolds number. Dokl Akad Nauk SSSR 30:9–13

    Google Scholar 

  • Mandelbrot BB (1995) On the geometry of homogeneous turbulence, with stress on the fractal dimension of the iso-surfaces of scalars. J Fluid Mech 72:401–4016

    Article  Google Scholar 

  • Mazzi B, Vassilicos J (2004) Fractal-generated turbulence. J Fluid Mech 502:65–87

    Article  Google Scholar 

  • Mendelbrot BB (1974) Intermitent turbulence in self-similar cascades: divergence of high moments and dimension of the carrier. J Fluid Mech 62:331–358

    Article  Google Scholar 

  • Metzler JK (2000) The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys Rep 339:1–77

    Article  Google Scholar 

  • Metzler JK, Kafter J (2004) The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J Phys A: Math Gen 37:R161

    Article  Google Scholar 

  • Nickola PW (1977) The Hanford 67–Series: A volume of atmopheric field diffusion measurements. Battelle, Pacific Northwest Laboratories

  • Novikov EA, Stewart RW (1964) Intermitency of turbulence and spectrum of fluctuations in energy dissipation. Izv Akad Nauk SSSR, Ser Geophys 3:408

    Google Scholar 

  • Olesen HR, Larsen SE, Hojstrup J (1984) Modelling velocity spectra in the lower part of the planetay boundary layer. Boundary-Layer Meteorol 29:285–312

    Article  Google Scholar 

  • Ortiz-Suslow DG, Wang Q (2011) An evaluation of Kolmogorov’s -5/3 power law observed within the turbulent airflow above the ocean. Geophys Res Lett 140:73–85

    Google Scholar 

  • Panofsky HA (1978) Matching in the convective planetary boundary layer. J Atmos Sci 35:272–276

    Article  Google Scholar 

  • Pleim JE, Chang J (1992) A non-local closure model for vertical mixing in the convective boundary layer. Atmos Environ 26–6:965–981

    Article  Google Scholar 

  • Procaccia A, Brandenburg MH, Vicent A (1992) The fractal dimension of iso-vorticity structures in 3-dimensional turbulence. Eur Lett 19:183–187

    Article  Google Scholar 

  • Procaccia I (1984) Fractal structure in turbulence. J Stat Phys 36:649–693

    Article  Google Scholar 

  • Richardson L (1926) Atmospheric diffusion shown on a distance-neighbour graph. Proc Roy Soc Lond A 110:709–737

    Article  Google Scholar 

  • Sorjan Z (1989) Structure of the atmospheric boundary layer. Prentice Hall

  • Menevau Sreenivasan C K R (1986) The fractal facets of turbulence. J Fluid Mech 173:357–386

    Article  Google Scholar 

  • Sreenivasan KR, Bershadskii A (2006) Clustering properties in turbulent signals. J Stat Phys 125(11):453–1157

    Google Scholar 

  • Tennekes H, Lumley JL (1972) A First Course in Turbulence. MIT Press

  • Thormann A, Meneveau C (2014) Decay of homogeneous, nearly isotropic turbulence behing active fractal grids. Phys Fluids 26(025):112

    Google Scholar 

  • Vindel YCJM (2011) Intermittency of turbulence in the atmospheric boundary layer: scaling exponents and stratification. Boundary-Layer Meteorol 140:73–85

    Article  Google Scholar 

  • Wandel CF, Kofoend-Hansen O (1962) On the eulerian-lagrangian transform in the statistical theory of turbulence. J Geophys Res 67:3089–3093

    Article  Google Scholar 

  • Weil J (1989) Stochastic modeling of dispersion in the convective boundary layer. In: Dop H (ed) Air Pollution Modeling and its Application VII. Plenum Press

Download references

Acknowledgements

This work was supported in part by Conselho Nacional de Pesquisa (CNPq) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Brazilian funding agencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Goulart.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goulart, A., Suarez, J.M.S. & Lazo, M.J. Modelling Fractal Turbulent Velocity Spectra: Application to a Dispersion Model of Contaminants in Particular Cases of the Planetary Boundary Layer. Boundary-Layer Meteorol 183, 407–421 (2022). https://doi.org/10.1007/s10546-022-00695-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-022-00695-9

Keywords

Navigation