Skip to main content

Advertisement

Log in

Small-Scale Spatial Variation of the Nocturnal Wind Field

  • Research Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

This study examines the spatial variability of the nocturnal wind field using eight networks of surface observations ranging in horizontal width from 500 m to 65 km. The wind field is partitioned into small-scale variability (submeso motions) and the spatially-averaged wind vector. The vector-averaged wind is analogous to the wind resolved by a numerical model, posed here in terms of the wind that is vector averaged over an observational network. The small-scale variability represents the unresolved subgrid (sub-network) variation estimated in terms of the spatial variation of the wind vector within the observational domain. The bulk formula for the spatially-averaged heat flux is modified to account for the subgrid variation of the wind field. Investigation of the spatial variability of the wind field is also motivated by the need to estimate the representativeness of observations of the wind vector at an individual measurement site with respect to the wind field over the surrounding landscape. The small-scale variability of the observed wind field is contrasted between the networks as a function of the spatially-averaged wind vector, stratification, size of the network, and the topography. A strong dependence on topography emerges in spite of different instrumentation, deployment strategy, and processing for each network. Even weak topography can be important. A better design for future observational networks is briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abraham C, Monahan A (2020) Spatial dependence of stably stratified nocturnal boundary-layer regimes in complex terrain. Boundary-Layer Meteorol 177:19–47

    Article  Google Scholar 

  • Acevedo O, Fitzjarrald D (2003) In the core of the night—effect of intermittent mixing on a horizontally heterogeneous surface. Boundary-Layer Meteorol 106:1–33

    Article  Google Scholar 

  • Acevedo O, Costa F, Oliveira P, Puhales F, Degrazia G, Roberti D (2014) The influence of submeso processes on stable boundary layer similarity relationships. J Atmos Sci 71:207–225

    Article  Google Scholar 

  • Anfossi D, Oetti D, Degrazia G, Boulart A (2005) An analysis of sonic anemometer observations in low wind speed conditions. Boundary-Layer Meteorol 114:179–203

    Article  Google Scholar 

  • Angevine W, Edwards JM, Lothon M, LeMone MA, Osborne SR (2020) Transition periods in the diurnally-varying atmospheric boundary layer over land. Boundary-Layer Meteorol 177:205–223

    Article  Google Scholar 

  • Ansorge C, Mellado J (2014) Global intermittency and collapsing turbulence in a stratified planetary boundary layer. Boundary-Layer Meteorol 153:89–116

    Article  Google Scholar 

  • Banta R, Pichugina Y, Newsom R (2003) Relationship between low-level jet properties and turbulence kinetic energy in the nocturnal stable boundary layer. J Atmos Sci 60:2549–2555

    Article  Google Scholar 

  • Beljaars A (1995) The parameterization of surface fluxes in large-scale models under free convection. Q J R Meteorol Soc 121:255–270

    Article  Google Scholar 

  • Belušić D, Mahrt L (2008) Estimation of length scales from mesoscale networks. Tellus 60a:706–715

    Google Scholar 

  • Bodine D, Klein P, Arms S, Shapiro A (2009) Variability of surface air temperature over gently sloped terrain. J Appl Meteorol 48:1117–1141

    Article  Google Scholar 

  • Bou-Zeid E, Anderson W, Katul GG, Mahrt L (2020) The persistent challenge of surface heterogeneity in boundary-layer meteorology: a review. Boundary-Layer Meteorol 177:227–245

    Article  Google Scholar 

  • Boyko V, Vercauteren N (2021) Multiscale shear forcing of turbulence in the nocturnal boundary layer: a statistical analysis. Boundary-Layer Meteorol 179:43–72

    Article  Google Scholar 

  • Cava D, Mortarini L, Giostra U, Richiardone R, Anfossi D (2017) A wavelet analysis of low wind speed submeso motions in a nocturnal boundary layer. Q J R Meteorol Soc 143:661–669

    Article  Google Scholar 

  • Cava D, Mortarini L, Anfossi D, Giostra U (2019a) Interaction of submeso motions in the Antarctic stable boundary layer. Boundary-Layer Meteorol 171:151–173

    Article  Google Scholar 

  • Cava D, Mortarini L, Giostra U, Acevedo O, Katul G (2019b) Submeso motions and intermittent turbulence across a nocturnal low-level jet: a self-organized criticality analogy. Boundary-Layer Meteorol 172:17–43

    Article  Google Scholar 

  • Chow F, Weigel A, Street R, Rotach M, Xue M (2006) High-resolution large-eddy simulations of flow in a steep alpine valley. Part I: methodology, verification, and sensitivity studies. J Appl Meteorol Climatol 45:63–68

    Article  Google Scholar 

  • Cuxart J (2008) Nocturnal basin low-level jets: an integrated study. Ann Geophys 56:100–113

    Google Scholar 

  • Cuxart J, Jiménez M, Martínez D (2007) Nocturnal mesobeta basin and katabatic flows on a midlatitude island. Mon Weather Rev 135:918–932

    Article  Google Scholar 

  • Cuxart J, Cunillera J, Jiménez MA, Martínez D, Molinos F, Palau JL (2012) Study of mesobeta basin flows by remote sensing. Boundary-Layer Meteorol 143:143–158

    Article  Google Scholar 

  • Cuxart J, Martínez-Villagrasa D, Stiperski I (2020) Validation of a simple diagnostic relationship for downslope flows. Atmos Sci Lett. https://doi.org/10.1002/asl.965

  • Danielson J, Gesch D (2011) Global multi-resolution terrain elevation data 2010 (GMTED2010). Geological Survey, Tech rep, U.S. https://doi.org/10.3133/ofr20111073

  • Edwards J, Beljaars ACM, Holtslag AAM, Lock AP (2020) Representation of boundary-layer processes in numerical weather prediction and climate models. Boundary-Layer Meteorol 177:511–539

    Article  Google Scholar 

  • Fairall C, Bradley E, Rogers D, Edson J (1996) Bulk parameterization of air-sea fluxes for tropical ocean-global atmosphere coupled-ocean atmosphere response experiment. J Geophys Res 101:3747–3764

    Article  Google Scholar 

  • Fedorovich E, Shapiro A (2009) Structure of numerically simulated katabatic and anabatic flows along steep slopes. Ann Geophys 57:981–1010

    Google Scholar 

  • Fedorovich E, Shapiro A (2017) Oscillations in Prandtl slope flow started from rest. Q J R Meteorol Soc 143:670–677

    Article  Google Scholar 

  • Fernando HJS, Mann J, Palma JMLM, Lundquist JK, Barthelmie RJ, Belo-Pereira M, Brown WOJ, Chow FK, Gerz T, Hocut CM, Klein PM, Leo LS, Matos JC, Oncley SP, Pryor SC, Bariteau L, Bell TM, Bodini N, Carney MB, Courtney MS, Creegan ED, Dimitrova R, Gomes S, Hagen M, Hyde JO, Kigle S, Krishnamurthy R, Lopes JC, Mazzaro L, Neher JMT, Menke R, Murphy P, Oswald L, Otarola-Bustos S, Pattantyus AK, Veiga CRA, Schady Sirin N, Spuler S, Svensson E, Tomaszewski J, Turner DD, van Veen L, Vasiljevi N, Vassallo D, Voss S, Wildmann N, Wang Y (2017) The Perdig\({\tilde{a}}\)o: peering into microscale details of mountain winds. Bull Am Meteorol Soc 100:799–819

    Article  Google Scholar 

  • Finnigan J, Ayotte K, Harman I, Katul G, Oldroyd H, Patton E, Poggi D, Ross A, Taylor P (2020) Boundary-layer flow over complex topography. Boundary-Layer Meteorol 177:247–313

    Article  Google Scholar 

  • Freedman J, Fitzjarrald D (2017) Mechanisms responsible for the observed thermodynamic structure of a convective boundary layer over the Hudson Valley of New York State. Boundary-Layer Meteorol 164:89–106

    Article  Google Scholar 

  • Grachev A, Leo LS, Sabatino SD, Fernando HJS, Pardyjak ER, Fairall CW (2016) Structure of turbulence in katabatic flows below and above the wind-speed maximum. Boundary-Layer Meteorol 159:469–494

    Article  Google Scholar 

  • Grachev AA, Andreas E, Fairall C, Guest P, Persson P (2013) The critical Richardson number and limits of applicability of local similarity theory in the stable boundary layer. Boundary-Layer Meteorol 147:51–82

    Article  Google Scholar 

  • Grisogono B, Axelsen SL (2012) A note on the pure katabatic wind maximum over gentle slopes. Boundary-Layer Meteorol 145:527–538

    Article  Google Scholar 

  • Grisogono B, Rajak Z (2009) Assessment of Monin–Obukhov scaling over small slopes. Geofizika 26:101–108

    Google Scholar 

  • Grisogono B, Kraljević L, Jeričević J (2007) The low-level katabatic jet height versus Monin–Obukhov height. Q J R Meteorol Soc 133:2133–2136

    Article  Google Scholar 

  • Grisogono B, Sun J, Belušić D (2020) A note on MOST and HOST for turbulence parameterization. Q J R Meteorol Soc 146:1991–1997

    Article  Google Scholar 

  • Guerra VS, Acevedo OC, Medeiros LE, Oliveira PES, Santos DM (2018) Small-scale horizontal variability of mean and turbulent quantities in the nocturnal boundary layer. Boundary-Layer Meteorol 169:395–411

    Article  Google Scholar 

  • Kang Y, Belušić D, Smith-Miles K (2015) Classes of structures in the stable atmospheric boundary layer. Q J R Meteorol Soc 141:2057–2069

    Article  Google Scholar 

  • Katul GG (2019) The anatomy of large-scale motion in atmospheric boundary layers. J Fluid Mech 858:1–4. https://doi.org/10.1017/jfm.2018.731

    Article  Google Scholar 

  • Kustas W, Li F, Jackson J, Preuger J, MacPherson J, Wolde M (2004) Effects of remote sensing pixel resolution on modeled energy flux variability of croplands in Iowa. Remote Sens Environ 92:535–547

    Article  Google Scholar 

  • Lang F, Belušić D, Siems S (2018) Observations of wind direction variability in the nocturnal boundary layer. Boundary-Layer Meteorol 166:51–68

    Article  Google Scholar 

  • Lapworth A, Osborne SR (2020) The nocturnal wind speed and sensible heat flux over flat terrain. Boundary-Layer Meteorol 176:401–413

    Article  Google Scholar 

  • Lehner M, Rotach M (2018) Current challenges in understanding and predicting transport and exchange in the atmosphere over mountainous terrain. Atmosphere https://doi.org/10.3390/atmos9070276

  • Leo L, Thompson M, Sabatino SD, Fernando HJS (2016) Stratified flow past a hill: dividing streamline concept revisited. Boundary-Layer Meteorol 159:611–634

    Article  Google Scholar 

  • Levy G, Vickers D (1999) Surface fluxes from satellite winds: modeling air-sea flux enhancement from spatial and temporal observations. J Geophys Res 104:20,639–20,650

    Article  Google Scholar 

  • Louis JF (1979) A parametric model of vertical eddy fluxes in the atmosphere. Boundary-Layer Meteorol 17:187–202

    Article  Google Scholar 

  • Mahrt L (2007) Weak-wind mesoscale meandering in the nocturnal boundary layer. Environ Fluid Mech 7:331–347

    Article  Google Scholar 

  • Mahrt L (2008) Bulk formulation of the surface fluxes extended to weak-wind stable conditions. Q J R Meteorol Soc 134:1–10

    Article  Google Scholar 

  • Mahrt L (2017) Lee mixing and nocturnal structure over gentle terrain. J Atmos Sci 74:1989–1999

    Article  Google Scholar 

  • Mahrt L (2020) Time-space variations of temperature in the nocturnal boundary layer. Q J R Meteorol Soc 146:2756–2767. https://doi.org/10.1002/qj.3815

    Article  Google Scholar 

  • Mahrt L, Sun J, Oncley SP, Horst TW (2014) Transient cold air drainage down a shallow valley. J Atmos Sci 71:2534–2544

    Article  Google Scholar 

  • Medeiros DG, Fitzjarrald D (2015) Stable boundary layer in complex terrain. Part II: geometrical and sheltering effects on mixing. J Appl Meteorol Climatol 54:170–188

    Article  Google Scholar 

  • Menke R, Vasiljević N, Mann J, Lundquist JK (2019) Characterization of flow recirculation zones at the Perdig\({\tilde{a}}\)o site using multi-lidar measurements. Atmos Chem Phys 29:851–875

    Google Scholar 

  • Mortarini L, Stefanello M, Degrazia G, Roberti D, Castelli ST, Anfossi D (2016) Characterization of wind meandering in low-wind-speed conditions. Boundary-Layer Meteorol 161:165–182

    Article  Google Scholar 

  • Mortarini L, Cava D, Giostra U, Acevedo O, Nogueira Martins LG, Soares de Oliveira PE, Anfossi D (2018) Observations of submeso motions and intermittent turbulent mixing across a low level jet with a 132-m tower. Q J R Meteorol Soc 144:172–183

    Article  Google Scholar 

  • Nadeau DF, Pardyjak ER, Higgins CW, Huvald H, Parlange MB (2013) Flow during the evening transition over steep alpine slopes. Q J R Meteorol Soc 139:607–624

    Article  Google Scholar 

  • Oldroyd H, Katul G, Pardyjak E, Parlange W (2014) Momentum balance of katabatic flow on steep slopes covered with short vegetation. Geophys Res Lett 41:4761–4768

    Article  Google Scholar 

  • Oldroyd HJ, Pardyjak ER, Higgins C, Parlange MB (2016a) Buoyant turbulent kinetic energy production in steep-slope katabatic flow. Boundary-Layer Meteorol 159:539–565

    Article  Google Scholar 

  • Oldroyd HJ, Pardyjak ER, Huwald H, Parlange MB (2016b) Adapting tilt corrections and the governing flow equations for steep, fully three-dimensional, mountainous terrain. Boundary-Layer Meteorol 161:405–416

    Article  Google Scholar 

  • Pfister L, Sigmund A, Olesch J, Thomas CK (2017) Nocturnal near-surface temperature but not flow dynamics, can be predicted by microtopography in a mid-range mountain valley. Boundary-Layer Meteorol 165:333–348

    Article  Google Scholar 

  • Pfister L, Sayde C, Selker J, Mahrt L, Thomas CK (2019) Classifying the nocturnal boundary layer into temperature and flow regimes. Q J R Meteorol Soc 145:1515–1534

    Article  Google Scholar 

  • Poulos G, Blumen W, Fritts D, Lundquist J, Sun J, Burns S, Nappo C, Banta R, Newsome R, Cuxart J, Terradellas E, Balsley B, Jensen M (2001) A comprehensive investigation of the stable nocturnal boundary layer. Bull Am Meteorol Soc 83:555–581

    Article  Google Scholar 

  • Rotach MW, Zardi D (2007) On the boundary-layer structure over highly complex terrain: Key findings from MAP. Q J R Meteorol Soc 133:937–948

    Article  Google Scholar 

  • Rotach MW, Stiperski I, Furher O, Goger B, Gohm A, Obleitner F, Rau G, Sfyri E, Vergeiner J (2017) Investigating exchange processes over complex topography: the Innsbruck Box (I-Box). Bull Am Meteorol Soc 98:787–805

    Article  Google Scholar 

  • Salesky ST, Anderson W (2018) Buoyancy effects on large-scale motions in convective atmospheric boundary layers; implications for modulation of near-wall processes. J Fluid Mech 856:135–168

    Article  Google Scholar 

  • Salesky ST, Anderson W (2020) Coherent structures modulate atmospheric surface layer flux-gradient relationships. Phys Rev Lett https://doi.org/10.1103/PhysRevLett.125.124501

  • Shapiro A, Fedorovich E, Rahimi S (2016) A unified theory for the Great Plains nocturnal low-level jet. J Atmos Sci 73:3037–3057

    Article  Google Scholar 

  • Sheridan P, Vosper S, Smith S (2018) A case-study of cold-air pool evolution in hilly terrain using field measurements from COLPEX. J Appl Meteorol Climatol 57:1907–1929

    Article  Google Scholar 

  • Staebler R, Fitzjarrald D (2004) Observing subcanopy CO2 advection. Agric For Meteorol 122:139–156

    Article  Google Scholar 

  • Stefanello M, Cava D, Giostra U, Acevedo O, Degrazia G, Anfossi D, Mortarini L (2020) Influence of submeso motions on scalar oscillations and surface energy balance. Q J R Meteorol Soc 146:889–903

    Article  Google Scholar 

  • Stiperski I, Rotach MW (2016) On the measurement of turbulence over complex mountainous terrain. Boundary-Layer Meteorol 159

  • Stoll R, Porté-Agel F (2009) Surface heterogeneity effects on regional-scale fluxes in stable boundary layers: surface temperature transitions. J Atmos Sci 15:1392–1404

    Google Scholar 

  • Sun J, Mahrt L, Nappo C, Lenschow D (2015a) Wind and temperature oscillations generated by wave-turbulence interactions in the stably stratified boundary layer. J Atmos Sci 71:1484–1503

    Article  Google Scholar 

  • Sun J, Nappo CJ, Mahrt L, Belušić D, Grisogono B, Stauffer DR, Pulido M, Staquet C, Jiang Q, Pouquet A, Yagüe C, Galperin B, Smith RB, Finnigan JJ, Mayor SD, Svensson G, Grachev AA, Neff WD (2015b) Review of wave-turbulence interactions in the stable atmospheric boundary layer. Rev Geophys 53:965–993

    Article  Google Scholar 

  • Sun J, Tackle ES, Acevedo O (2020) Understanding physical processes represented by the Monin–Obukhov bulk formula for moment transfer. Boundary-Layer Meteorol 177:69–95

    Article  Google Scholar 

  • Urbancic GH, Suomi I, Vihma T (2020) A general theory for the characterization of submeso-scale motions and turbulence in the atmospheric surface layer. Q J R Meteorol Soc 147:660–678

    Article  Google Scholar 

  • Van de Wiel BJH, Moene A, Hartogenesis G, Bruin HD, Holtslag AAM (2003) Intermittent turbulence in the stable boundary layer over land. Part III: a classification for observations during CASES-99. J Atmos Sci 60:2509–2522

    Article  Google Scholar 

  • Van den Bossche M, De Wekker SFJ (2018) Representativeness of wind measurements in moderately complex terrain. Theor Appl Climatol 135:491–504

    Article  Google Scholar 

  • Vercauteren N, Mahrt L, Klein R (2016) Investigation of interactions between scales of motion in the stable boundary layer. Q J R Meteorol Soc 142:2424–2433

    Article  Google Scholar 

  • Vercauteren N, Boyko V, Kaiser A, Belušić D (2019) Statistical investigations of flow structures in different regimes of the stable boundary layer. Boundary-Layer Meteorol 173:143–164

    Article  Google Scholar 

  • Viana S, Terradellas S, Yagüe C (2010) Analysis of gravity waves generated at the top of a drainage flow. J Atmos Sci 67:3949–3966

    Article  Google Scholar 

  • Vickers D, Esbensen S (1998) Subgrid surface fluxes in fair weather conditions during TOGA COARE: observational estimates and parameterization. Mon Weather Rev 126:620–633

    Article  Google Scholar 

  • Williams A (2001) A physically based parameterization for surface flux enhancement by gustiness in dry and precipitating convection. Q J R Meteorol Soc 127:469–491

    Article  Google Scholar 

  • Williams A, Chambers S, Griffiths S (2013) Bulk mixing and decoupling of the stable nocturnal boundary layer characterized using a ubiquitous natural tracer. Boundary-Layer Meteorol 149:381–402

    Article  Google Scholar 

  • Žagar N, Žagar M, Cedilnik J, Gregoric̆ G, Rakovec J (2006) Validation of mesoscale low-level winds obtained by dynamical downscaling of ERA40 over complex terrain. Tellus 58:445–455

    Article  Google Scholar 

  • Zhou B, Chow FK (2014) Nested large-eddy simulations of the intermittently turbulent stable atmospheric boundary layer over real terrain. J Atmos Sci 71:1021–1039

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the important comments of Luca Mortarini, Branko Grisogono, Joan Cuxart, and an anonymous reviewer. Larry Mahrt is funded by Grant AGS 1945587 from the U.S. National Science Foundation. Otávio Acevedo is supported by the Brazilian Conselho Nacional de Desenvolvimento Cientifico e Tecnológico (CNPq) and the Comissăo de Aperfeiçoamento de Pessoal de Ensino Superior (CAPES). We gratefully acknowledge Dave Fitzjarrald for the HVAMS and FOG-82 data and assistance in use of the measurements. The data from the Perdigão group, accessed via https://www.eol.ucar.edu/field_projects/Perdigão, are gratefully acknowledged. The Earth Observing Laboratory of the National Center for Atmospheric Research provided the SCP and CASES-99 measurements. We also wish to acknowledge William Kustas and John Preuger for the Iowa data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Mahrt.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahrt, L., Belušić, D. & Acevedo, O. Small-Scale Spatial Variation of the Nocturnal Wind Field. Boundary-Layer Meteorol 180, 225–245 (2021). https://doi.org/10.1007/s10546-021-00627-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-021-00627-z

Keywords

Navigation