Skip to main content
Log in

Measurement of Fluxes Over Land: Capabilities, Origins, and Remaining Challenges

  • Research Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

In the first half of the twentieth century the measurement of rates of exchange of momentum, heat, and especially water between the terrestrial surface and the atmosphere was an elusive challenge. A wide variety of methods evolved, ranging from reliance on drag plates, evaporation pans, and weighed lysimeters to a variety of methods based on measurement of vertical gradients in the air. None of these provided great confidence in the results. The promise of direct measurement by eddy covariance was held at bay by the lack of suitable fast-response instrumentation and the analytical requirement to average the products of pairs of these fast-response signals. Developments starting in the 1950s have now largely solved the problems that previously limited eddy covariance. Here, the history of flux measurement is summarized, and the path to now-standard capabilities is explored. The currently active major international programs making use of the modern instrumentation are addressed (with the focus on CO2 and CH4, as befitting global concerns regarding climate change), with particular attention to the emerging need to revisit the fetch and footprint constraints that confronted early workers. Finally, some areas of continuing uncertainty are mentioned, with an implicit request for increased experimental attention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allen LH, Lemon ER (1976) Carbon dioxide exchange and turbulence above a deciduous forest in wintertime. In: Monteith JL (ed) Vegetation and the atmosphere volume 2, case studies. Academic Press, New York, pp 265–308

    Google Scholar 

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration—guidelines for computing crop water requirements. United Nations Food and Agriculture Organization Irrigation and Drainage paper #56, 174 pp

  • Allen RG, Pruitt WO, Wright JL, Howell TA, Ventura F, Snyder R, Itenfisu D, Steduto P, Berengena J, Yrisarry JB, Smith M, Pereira LS, Raes D, Perrier A, Alves I, Walter I, Elliott R (2006) A recommendation on standardized surface resistance for hourly calculation of reference ETo by the FAO56 Penman-Monteith method. Agric Water Manag 81:1–22

    Google Scholar 

  • Anderson DE, Verma SB (1985) Turbulence spectra of CO2 water–vapor, temperature and wind velocity fluctuations over a crop surface. Boundary-Layer Meteorol 33:1–14

    Google Scholar 

  • Anderson DE, Verma SB, Rosenberg NJ (1984) Eddy-correlation measurements of CO2, latent-heat, and sensible heat fluxes over a crop surface. Boundary-Layer Meteorol 29:263–272

    Google Scholar 

  • Andersson F (1986) Acidic deposition and its effects on the forests of Nordic Europe. Water Air Soil Pollut 30:17–29

    Google Scholar 

  • André J-C, Bougeault P, Goutorbe J-P (1990) Regional estimates of heat and evaporation fluxes over non-homogeneous terrain, Examples from the HAPEX-MOBILHY programme. Boundary-Layer Meteorol 50:77–108

    Google Scholar 

  • Andreae MO, Acevedo OC, Araùjo A, Artaxo P, Barbosa CGG, Barbosa HMJ, Brito J, Carbone S, Chi X, Cintra BBL, da Silva NF, Dias NL, Dias-Júnior CQ, Ditas F, Ditz R, Godoi AFL, Godoi RHM, Heimann M, Hoffmann T, Kesselmeier J, Könemann T, Krüger ML, Lavric JV, Manzi AO, Lopes AP, Martins DL, Mikhailov EF, Moran-Zuloaga D, Nelson BW, Nölscher AC, Santos Nogueira D, Piedade MTF, Pöhlker C, Pöschl U, Quesada CA, Rizzo LV, Ro C-U, Ruckteschler N, Sá LDA, de Oliveira SM, Sales CB, dos Santos RMN, Saturno J, Schöngart J, Sörgel M, de Souza CM, de Souza RAF, Su H, Targhetta N, Tóta J, Trebs I, Trumbore S, van Eijck A, Walter D, Wang Z, Weber B, Williams J, Winderlich J, Wittmann F, Wolff S, Yáñez-Serrano AM (2015) The Amazon Tall Tower Observatory (ATTO): overview of pilot measurements on ecosystem ecology, meteorology, trace gases, and aerosols. Atmos Chem Phys 15:10723–10776

    Google Scholar 

  • Aubinet M, Vesala T, Papale D (eds) (2012a) Eddy covariance: a practical guide to measurement and data analysis. Springer, Dordrecht, p 438

    Google Scholar 

  • Aubinet M, Feigenwinter C, Heinesch B, Laffineur Q, Papale D, Reichstein M, Rinne J, Van Gorsel E (2012b) Nighttime flux correction. In: Aubinet et al (eds) Eddy covariance: a practical guide to measurement and data analysis. Springer, Berlin, pp 133–157

    Google Scholar 

  • Auble DL, Meyers TP (1992) An open path, fast response infrared-absorption gas analyzer for H2O and CO2. Boundary-Layer Meteorol 59:243–256

    Google Scholar 

  • Baas P, Bosveld FC, Baltink HK, Holtslag AAM (2009) A climatology of low-level jets at Cabauw. J Appl Meteorol Climatol 48:1627–1642

    Google Scholar 

  • Baldocchi DD (1997) Flux footprints within and over forest canopies. Boundary-Layer Meteorol 85:273–292

    Google Scholar 

  • Baldocchi DD, Valentini R, Running SR, Oechel W, Dahlman R (1996) Strategies for measuring and modelling CO2 and water vapor fluxes over terrestrial ecosystems. Glob Change Biol 2:159–168

    Google Scholar 

  • Baldocchi DD, Falge E, Gu L, Olson R, Hollinger D, Running S, Anthoni P, Bernhofer Ch, Davis K, Evans R, Fuentes J, Goldstein A, Katul G, Law B, Lee X, Malhi Y, Meyers T, Munger W, Oechel W, Paw UKT, Pilegaard K, Schmid HP, Valentini R, Verma S, Vesala T, Wilson K, Wofsy S (2001) FLUXNET, a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull Am Meteorol Soc 82:2415–2434

    Google Scholar 

  • Baldocchi DD, Detto M, Sonnentag O, Verfaillie J, Teh YA, Silver W, Kelly NM (2012) The challenges of measuring methane fluxes and concentrations over a peatland pasture. Agric Forest Meteorol 153:77–187

    Google Scholar 

  • Barad ML (1958) Project prairie grass, a field program in diffusion, volume I. Air Force Cambridge Research Center, Geophysical Research Papers No. 59, 298 p

  • Baumgartner A (1969) Meteorological approach to exchange of CO2 between atmosphere and vegetation, particularly forest stands. Photosynthetica 3:127–149

    Google Scholar 

  • Berden G, Peeters R, Meijer G (2000) Cavity ring-down spectroscopy: Experimental schemes and applications. Int Rev Phys Chem 19:565–607

    Google Scholar 

  • Beringer J, Hutley LB, McHugh I, Arndt SK, Campbell D, Cleugh HA, Cleverly J, de Dios VR, Eamus D, Evans B, Ewenz C, Grace P, Griebel A, Haverd V, Hinko-Najera N, Huete A, Isaac P, Kanniah K, Leuning R, Liddell MJ, Macfarlane C, Meyer W, Moore C, Pendall E, Phillips A, Phillips RL, Prober SM, Restrepo-Coupe N, Rutledge S, Schroder I, Silberstein R, Southall P, Yee MS, Tapper N, van Gorsel E, Vote C, Walker J, Wardlaw T (2016) An introduction to the Australian and New Zealand flux tower network–OzFlux. Biogeosciences 13:5895–5916

    Google Scholar 

  • Black TA, den Hartog G, Neumann HH, Blanken PD, Yang PC, Russell C, Nesic Z, Lee X, Chen SG, Staebler R, Novak MD (1996) Annual cycles of water vapour and carbon dioxide fluxes in and above a boreal aspen forest. Glob Change Biol 2:219–229

    Google Scholar 

  • Bogena H, Borg E, Brauer A, Dietrich P, Hajnsek I, Heinrich I, Kiese R, Kunkel R, Kunstmann H, Merz B, Priesack E, Putz T, Schmid HP, Wollschlager U, Vereecken H, Zacharias S (2016) TERENO: German network of terrestrial environmental observatories. J Large-Scale Res Facilities 2:A52 8 p

  • Bosman HH (1987) The influence of installation practices on evaporation from Symon’s tank and American class A pan evaporimeters. Agric Forest Meteorol 41:307–323

    Google Scholar 

  • Bosman HH (1990) Methods to convert American class A-pan and Symon’s tank evaporation to that of a representative environment. Water SA 16:227–236

    Google Scholar 

  • Bosveld FC, Baas P, van Meijgaard E, de Bruijn EIF, Steeneveld G-J, Holtslag AAM (2014) The third GABLS intercomparison case for evaluation studies of boundary-layer models. Part A: case selection and set-up. Boundary-Layer Meteorol 152:133–156

    Google Scholar 

  • Bovsheverov VM, Gurvich AS, Tsvang LR (1959) Direct measurements of the turbulent heat flux in the atmospheric surface layer. Dokl Akad Nauk SSSR 125:1242–1245

  • Bowen IS (1926) The ratio of heat losses by conduction and by evaporation from any water surface. Phys Rev 27:779–787

    Google Scholar 

  • Bowling DR, Turnipseed AA, Delany AC, Baldocchi DD, Greenberg JP, Monson RK (1998) The use of relaxed eddy accumulation to measure biosphere-atmosphere exchange of isoprene and other biological trace gases. Oecologia 116:306–315

    Google Scholar 

  • Bowling DR, Delany AC, Turnipseed AA, Baldocchi DD, Monson RK (1999) Modification of the relaxed eddy accumulation technique to maximize measured scalar mixing ratio differences in updrafts and downdrafts. J Geophys Res 104:9121–9133

    Google Scholar 

  • Bradley EF (1968) A shearing stress meter for micrometeorological studies. Q J R Meteorol Soc 94:380–387

    Google Scholar 

  • Brown EA, Friehe CA, Lenschow DH (1983) The use of pressure fluctuations on the nose of an aircraft for measuring air motion. J Clim Appl Meteorol 22:171–180

    Google Scholar 

  • Buck AL (1973) Development of an improved Lyman-alpha hygrometer. Atm Technol 2:213–240

    Google Scholar 

  • Busch NU, Kristensen L (1976) Cup anemometer overspeeding. J Appl Meteorol 15:1328–1332

    Google Scholar 

  • Businger JA (1986) Evaluation of the accuracy with which dry deposition can be measured with current micrometeorological techniques. J Appl Meteorol 25:1100–1124

    Google Scholar 

  • Businger JA, Oncley SP (1990) Flux measurement with conditional sampling. J Atmos Ocean Technol 7:349–352

    Google Scholar 

  • Businger JA, Wyngaard JC, Izumi Y, Bradley EF (1971) Flux–profile relationships in the atmospheric surface layer. J Atmos Sci 28:181–189

    Google Scholar 

  • Ciais P, Dolman AJ, Bombelli A, Duren R, Peregon A, Rayner PJ, Miller C, Gobron N, Kinderman G, Marland G, Gruber N, Chevallier F, Andres RJ, Balsamo G, Bopp L, Bréon F-M, Broquet G, Dargaville R, Battin TJ, Borges A, Bovensmann H, Buchwitz M, Butler J, Canadell JG, Cook RB, DeFries R, Engelen R, Gurney KR, Heinze C, Heimann M, Held A, Henry M, Law B, Luyssaert A, Miller J, Moriyama T, Moulin C, Myneni RB, Nussli C, Obersteiner M, Ojima D, Pan Y, Paris J-D, Piao SL, Pounter B, Plummer S, Quegan S, Raymond P, Reichstein M, Rivier L, Sabine C, Schimel D, Tarasova O, Valentini R, van der Werf G, Wickland D, Williams M, Zehner C (2013) Current systematic carbon cycle observations and needs for implementing a policy-relevant carbon observing system. Biogeosci Discus 10:11447–11581

    Google Scholar 

  • Clarke RH, Dyer AJ, Brook RR, Reid DG, Troup AJ (1971) Wangara experiment: boundary layer data. CSIRO Div Meteorol Phys Tech Paper 19, 316 p

  • Clifton OE, Fiore AM, Massman WJ, Baublitz CB, Coyle M, Emberson L, Fares S, Farmer DK, Gentine P, Gerosa G, Guenther AB, Helmig D, Lombardozzi DL, Munger JW, Patton EG, Pusede SE, Schwede DB, Silva SJ, Sörgel M, Steiner AL, Tai APK (2020) Dry deposition of ozone over land: processes, measurement, and modeling. Rev Geophys 58:e2019RG000670. https://doi.org/10.1029/2019rg000670, 62 pp

  • Coyne PI, Kelley JJ (1975) CO2 exchange over Alaskan arctic tundra—meteorological assessment by an aerodynamic method. J Appl Ecol 12:587–611

    Google Scholar 

  • Cramer HE, Record FA (1953) The variation with height of the vertical flux of heat and momentum. J Meteorol 10:219–226

    Google Scholar 

  • Crawford TL, Dobosy RL (1992) A sensitive fast-response probe to measure turbulence and heat flux from any airplane. Boundary-Layer Meteorol 59:257–278

    Google Scholar 

  • Crawford TL, Dobosy RJ, McMillen RT, Vogel CA, Hicks BB (1996) Air–surface exchange measurement in heterogeneous regions: extending tower observations with spatial structure observed from small aircraft. Glob Change Biol 2:275–285

    Google Scholar 

  • Cuxart J, Yagüe C, Morales G, Terradellas E, Orbe J, Calvo J, Fernández A, Soler MR, Infante C, Buenestado P, Espinalt A, Joergensen HE, Rees JM, Vilà H, Redondo JM, Cantalapiedra IR, Conangla L (2000) Stable atmosphere boundary-layer experiment in Spain (SABLES98): a report. Boundary-Layer Meteorol 96:337–370

    Google Scholar 

  • Davidson N, Lettau HH (1953) The Great Plains turbulence field program. Weatherwise 6:166–171

    Google Scholar 

  • Davidson EA, Savage K, Verchot LV, Navarro R (2002) Minimizing artifacts and biases in chamber-based measurements of soil respiration. Agric Forest Meteorol 113:21–37

    Google Scholar 

  • Deacon EL (1959) The measurement of turbulent transfer in the lower atmosphere. In: Frankiel FN, Sheppard PA (eds) Atmospheric diffusion and air pollution. Academic Press, New York, pp 211–228

    Google Scholar 

  • Denmead OT (1969) Comparative micrometeorology of a wheat field and a forest of Pinus radiata. Agric Meteorol 6:357–371

    Google Scholar 

  • Denmead OT (1984) Plant physiological methods for studying evapotranspiration—problems of telling the forest from the trees. Agric Water Manag 8:167–189

    Google Scholar 

  • Denmead OT (2008) Approaches to measuring fluxes of methane and nitrous oxide between landscapes and the atmosphere. Plant Soil 309:5–24

    Google Scholar 

  • Denmead OT, Bradley EF (1987) On scalar transport in plant canopies. Irrigation Sci 8:131–149

    Google Scholar 

  • Desjardins (1972) A study of carbon dioxide and sensible heat fluxes using the eddy correlation technique. PhD thesis, Agron. Department, Cornell University

  • Desjardins R (1974) Technique to measure CO2 exchange under field conditions. Int J Biometeorol 18:76–83

    Google Scholar 

  • Desjardins RL (1977) Description and evaluation of a sensible heat flux detector. Boundary-Layer Meteorol 11:147–154

    Google Scholar 

  • Desjardins RL, Brach EJ, Alvo P, Schuepp PH (1982) Aircraft monitoring of surface carbon-dioxide exchange. Science 216:733–735

    Google Scholar 

  • Desjardins RL, Denmead OT, Harper L, McBain M, Masse D, Kaharabata S (2004) Evaluation of a micrometeorological mass balance method employing an open-path laser for measuring methane emissions. Atmos Environ 38:6855–6866

    Google Scholar 

  • Dobosy RJ, Crawford TL, MacOherson JI, Desjardins RL, Kelly RD, Oncley SP, Lenschow DH (1997) Intercomparison among four aircraft at BOREAS in 1994. J Geophys Res 102:29101–29111

  • Duyzer JH, Verhagen HLM, Weststrate JH, Bosveld FC (1992) Measurement of the dry deposition flux of NH3 on to a coniferous forest. Environ Pollut 75:3–13

    Google Scholar 

  • Dyer AJ (1960) Heat transport anemometer of high stability. J Sci Instrum 37:166–169

    Google Scholar 

  • Dyer AJ (1961) Measurements of evaporation and heat transfer in the lower atmosphere by an automatic eddy-correlation technique. Q J R Meteorol Soc 87:401–412

    Google Scholar 

  • Dyer AJ (1963) The adjustment of profiles and eddy fluxes. Q J R Meteorol Soc 89:276–280

    Google Scholar 

  • Dyer AJ (1967) The turbulent transport of heat and water vapour in an unstable atmosphere. Q J R Meteorol Soc 93:501–508

    Google Scholar 

  • Dyer AJ (1974) A review of flux–profile relationships. Boundary-Layer Meteorol 7:363–372

    Google Scholar 

  • Dyer AJ, Hicks BB (1970) Flux–gradient relationships in constant flux layer. Q J R Meteorol Soc 96:715–721

    Google Scholar 

  • Dyer AJ, Maher FK (1965) Automatic eddy-flux measurement with the Evapotron. J Appl Meteorol 4:622–625

    Google Scholar 

  • Dyer AJ, Hicks BB, King KM (1966) The fluxatron—a revised approach to the measurement of eddy fluxes in the lower atmosphere. J Appl Meteorol 6:408–413

    Google Scholar 

  • Dyer AJ, Garratt JR, Francey RJ, McIlroy IC, Bacon NE, Hyson P, Bradley EF, Denmead T, Tsvang LR, Volkov YA, Koprov BM, Elagina LG, Sahashi K, Monji N, Hanafusa T, Tsukamoto O, Frenzen P, Hicks BB, Wesely M, Miyake M, Shaw W (1982) An International Turbulence Comparison Experiment (ITCE 1976). Boundary-Layer Meteorol 24:181–209

    Google Scholar 

  • Eastman JA, Stedman DH (1977) A fast response sensor for ozone eddy-correlation flux measurements. Atmos Environ 11:1209–1211

    Google Scholar 

  • Eckman RM, Dobosy RJ, Auble DL, Strong TW, Crawford TL (2007) A pressure-sphere anemometer for measuring turbulence and fluxes in hurricanes. J Atmos Ocean Technol 24:994–1007

    Google Scholar 

  • Edwards GC, Ogram GL (1986) Eddy correlation measurements of dry deposition fluxes using a tunable diode laser absorption spectrometer gas monitor. Water Air Soil Pollut 30:187–194

    Google Scholar 

  • Edwards GC, Neumann HH, den Hartog G, Thurtell GW, Kidd G (1994) Eddy correlation measurements of methane fluxes using a tunable diode laser at the Kinosheo Lake tower site during the Northern Wetlands Study (NOWES). J Geophys Res 99:1511–1517

    Google Scholar 

  • Einaudi F, Finnigan JJ (1993) Wave-turbulence dynamics in the stably stratified boundary layer. J Atmos Sci 50:1841–1864

    Google Scholar 

  • Elagina LG (1962) Optical device for measuring the turbulent pulsations of humidity. Izv Geophys Ser 8:1100–1107

    Google Scholar 

  • Falge E, Baldocchi D, Olson R, Anthoni P, Aubinet M, Bernhofer C, Burba G, Ceulemans R, Clement R, Dolman H, Granier A, Gross P, Grunwald T, Hollinger D, Jensen NO, Katul G, Keronen P, Kowalski A, Lai CT, Law BE, Meyers T, Moncrieff H, Moors E, Munger JW, Pilegaard K, Rannik U, Rebmann C, Suyker A, Tenhunen J, Tu K, Verma S, Vesala T, Wilson K, Wofsy S (2001) Gap filling strategies for long term energy flux data sets. Agric For Meteorol 107:71–77

    Google Scholar 

  • Fares S, Gentner DR, Park J-H, Ormeno E, Karlik J, Goldstein AH (2011) Biogenic emissions from Citrus species in California. Atmos Environ 45:4557–4568

    Google Scholar 

  • Finnigan JJ (2004) A re-evaluation of long-term flux measurement techniques—Part II: coordinate systems. Boundary-Layer Meteorol 113:1–41

    Google Scholar 

  • Finnigan J (2006) The storage term in eddy flux calculations. Agric Forest Meteorol 136:108–113

    Google Scholar 

  • Foken T (2006) 50 years of the Monin–Obukhov similarity theory. Boundary-Layer Meteorol 119:431–447

    Google Scholar 

  • Foken T (2008) The energy balance closure problem: an overview. Ecol Appl 18:1351–1367

    Google Scholar 

  • Foken T (2017) Micrometeorology. Springer, Berlin

    Google Scholar 

  • Foken T, Lindenberg RD, Kramm G (1995) On the determination of dry deposition and emission of gaseous compounds at the biosphere-atmosphere interface. Meteorol Zeitschrift 4:91–118

    Google Scholar 

  • Foken T, Gockede M, Mauder M, Mahrt L, Amiro B, Munger W (2004) Post-field data quality control. In: Lee X (ed) Chapter 9 in ‘Handbook of micrometeorology’. Kluwer Academic Publishers, Berlin, pp 181–208

  • Fowler D, Cape JN (1983) Dry deposition of SO2 onto a Scots pine forest. In: Pruppacher HR, Semonin RG, Slinn WGN (eds) Precipitation scavenging, dry deposition and resuspension. Elsevier, New York, pp 763–773

    Google Scholar 

  • Fowler D, Unsworth MH (1979) Turbulent transfer of sulphur dioxide to a wheat crop. Q J R Meteorol Soc 105:767–783

    Google Scholar 

  • Fowler D, Coyle M, Flechard C, Hargreaves K, Eiko Nemitz E, Storeton-West R, Mark Sutton M, Erisman J-W (2001) Advances in micrometeorological methods for the measurement and interpretation of gas and particle nitrogen fluxes. Plant Soil 228:117–129

    Google Scholar 

  • Fritschen LJ (1985) Characterization of boundary conditions affecting forest environmental phenomena. In: Hutchison BA, Hicks BB (eds) The forest-atmosphere interaction. D. Reidel, Boston, pp 1–23

    Google Scholar 

  • Funk JP (1959). Improved polythene shielded net radiometer. J Sci Inst 36:267–270

  • Galbally IE, Allison J (1972) Ozone fluxes over snow surfaces. J Geophys Res 77:3946–3949

    Google Scholar 

  • Garratt JR (1978) Flux–profile relations above tall vegetation. Q J R Meteorol Soc 104:199–211

    Google Scholar 

  • Garratt JR, Hicks BB (1990) Micrometeorological and PBL experiments in Australia. Boundary-Layer Meteorol 50:11–29

    Google Scholar 

  • Garratt JR, Pearman GI (2020) Retrospective analysis of micrometeorological observations above an Australian wheat crop. Boundary-Layer Meteorol. https://doi.org/10.1007/s10546-020-00526-9

    Article  Google Scholar 

  • Garratt JR, Angus DE, Holper PN (1998) Winds of change: fifty years of achievements in the CSIRO division of atmospheric research, 1946–1996. CSIRO Publishing, Collingwood, p 136

    Google Scholar 

  • Gash JHC (1986) A note on estimating the effect of a limited fetch on micrometeorological evaporation measurements. Boundary-Layer Meteorol 35:409–414

    Google Scholar 

  • Gash JHC, Dolman AJ (2003) Sonic anemometer (co)sine response and flux measurement: I. The potential for (co)sine error to affect sonic anemometer-based flux measurements. Agric Forest Meteorol 119:195–207

    Google Scholar 

  • Gash JHC, Shuttleworth WJ, Lloyd CR, Andre J-C, Goutorbe J-P, Gelpe J (1989) Micrometeorological measurements in Les-Landes Forest during HAPEX-MOBILHY. Agric Forest Meteorol 46:131–147

    Google Scholar 

  • Gerosa G, Vitale M, Finco A, Manes F, Denti AB, Cieslik S (2005) Ozone uptake by an evergreen Mediterranean Forest (Quercus ilex) in Italy. Part I: micrometeorological flux measurements and flux partitioning. Atmos Environ 39:3255–3266

    Google Scholar 

  • Gioli B, Miglietta F, De Martino F, Hutjes R (2004) Comparison between tower and aircraft-based eddy covariance fluxes in five European regions. Agric Forest Meteorol 127:1–16

    Google Scholar 

  • Goutorbe J-P, Lebel T, Tinga A, Bessemoulin P, Brouwer J, Dolman AJ, Engman ET, Gash JHC, Hoepffner M, Kabat P, Kerr YH, Monteny B, Prince S, Said F, Sellers P, Wallace JS (1997) HAPEX-Sahel: a large-scale study of land-atmosphere interactions in the semi-arid tropics. Ann Geophys 12:53–64

    Google Scholar 

  • Greco S, Baldocchi DD (1996) Seasonal variations of CO2 and water vapor exchange rates over a temperate deciduous forest. Glob Change Biol 2:183–198

    Google Scholar 

  • Hasselrot B, Grennfelt P (1987) Deposition of air pollutants in a wind-exposed forest edge. Water Air Soil Pollut 34:135–143

    Google Scholar 

  • Haugen DA (ed) (1973) Workshop on micrometeorology. Am. Meteorol. Soc., Boston, p 392

    Google Scholar 

  • Haverd V, Cuntz M, Leuning R, Keith H (2007) Air and biomass heat storage fluxes in a forest canopy: calculation within a soil vegetation atmosphere transfer model. Agric Forest Meteorol 147:125–139

    Google Scholar 

  • Hess GD, Hicks BB, Yamada T (1981) The impact of the Wangara experiment. Boundary-Layer Meteorol 20:135–174

    Google Scholar 

  • Hewson EW (ed) (1952) International symposium on atmospheric turbulence in the boundary layer. Air Force Cambridge Research Center, Geophysical Research Papers No. 19, 530 p

  • Hicks BB (1970) The measurement of atmospheric fluxes near the surface: a generalized approach. J Appl Meteorol 9:386–388

    Google Scholar 

  • Hicks BB (1972) Propeller anemometers as sensors of atmospheric turbulence. Boundary-Layer Meteorol 3:214–228

    Google Scholar 

  • Hicks BB, Goodman HS (1968) The eddy-correlation technique of evaporation measurement using a sensitized quartz-crystal hygrometer. J Appl Meteorol 10:221–223

    Google Scholar 

  • Hicks BB, Wesely ML (1978) An examination of some micrometeorological methods for measuring dry deposition. US Environmental Protection Agency report EPA–600/7-78-116, 18 p

  • Hicks BB, Hyson P, Moore CJ (1975) A study of eddy fluxes over a forest. J Appl Meteorol 14:58–66

    Google Scholar 

  • Hicks BB, Wesely ML, Durham JL, Brown MA (1982) Some direct measurements of atmospheric sulfur fluxes over a pine plantation. Atmos Environ 16:2899–2903

    Google Scholar 

  • Hicks BB, Pendergrass WR, Vogel CA, Keener RN, Leyton SM (2014) On the micrometeorology of the Southern Great Plains 1: legacy relationships revisited. Boundary-Layer Meteorol 151:389–405

    Google Scholar 

  • Högström U (1988) Non-dimensional wind and temperature profiles in the atmospheric surface layer: a re-evaluation. Boundary-Layer Meteorol 42:55–78

    Google Scholar 

  • Hovde DC, Stanton AC, Meyers TP, Matt DR (1995) Methane emissions from a landfill measured by eddy correlation using a fast-response diode-laser sensor. J Atmos Chem 20:141–162

    Google Scholar 

  • Hyson P, Hicks BB (1975) Single-beam infrared hygrometer for evaporation measurement. J Appl Meteorol 14:301–307

    Google Scholar 

  • Irving P (1990) Acid deposition: state of science and technology. In four volumes. US National Acid Precipitation Assessment Program, Washington, DC

  • Izumi Y (1971) Kansas 1968 field program data report, Environmental Research Papers, No. 379, AFC RL-72-0041, Air Force Cambridge Research Laboratories, Bedford, Massachusetts 79 p

  • Jones EP, Ward TV, Zwick HH (1978) Fast response atmospheric CO2 sensor for eddy correlation flux measurements. Atmos Environ 12:845–851

    Google Scholar 

  • Kaimal JC, Businger JA (1963) A continuous wave sonic anemometer thermometer. J Appl Meteorol 2:156–164

    Google Scholar 

  • Kaimal JC, Finnigan JJ (1994) Atmospheric boundary layer flows: their structure and measurement. Oxford University Press, New York, p 289

    Google Scholar 

  • Kaimal JC, Gaynor JE (1983) The Boulder atmospheric observatory. J Clim Appl Meteorol 22:863–880

    Google Scholar 

  • Kaimal JC, Gaynor JE (1991) Another look at sonic thermometry. Boundary-Layer Meteorol 56:401–410

    Google Scholar 

  • Kaimal JC, Wyngaard JC (1990) The Kansas and Minnesota experiments. Boundary-Layer Meteorol 50:31–47

    Google Scholar 

  • Kaimal JC, Wyngaard JC, Haugen DA (1968) Deriving power spectra from a three-component sonic anemometer. J Appl Meteorol 7:827–837

    Google Scholar 

  • Kaimal JC, Wyngaard JC, Izumi Y, Cote OR (1972) Spectral characteristics of surface-layer turbulence. Q J R Meteorol Soc 98:563–589

    Google Scholar 

  • Kaimal JC, Wyngaard JC, Haugen DA, Coté OR, Izumi Y (1976) Turbulence structure in the convective boundary layer. J Atmos Sci 33:2152–2169

    Google Scholar 

  • Kanemasu ET, Wesely ML, Hicks BB, Heilman JL (1979) Techniques for calculating energy and mass fluxes. In: Barfield BJ, Grber JF (eds) Modification of the aerial environment of crops. Amer. Soc. Civil Engineers Monograph, vol 2, pp 156–182, 538 p

  • Katul GG, Kuhn G, Scheildge J, Hsieh CI (1997) The ejection-sweep character of scalar fluxes in the unstable surface layer. Boundary-Layer Meterol 83:1–26

    Google Scholar 

  • Knox SH, Jackson RB, Poulter B, McNicol G, Fluet-Chouinard E, Zhang Z, Hugelius G, Bousquet P, Canadell JG, Saunois M, Papale D, Chu H, Keenan TF, Baldocchi DD, Torn MS, Mammarella I, Trotta C, Aurela M, Bohrer G, Campbell DI, Cescatti A, Chamberlain S, Chen J, Chen W, Dengel S, Desai AR, Euskirchen E, Friborg T, Gasbarra D, Goded I, Goeckede M, Heimann M, Helbig M, Hirano T, Hollinger TY, Iwata H, Kang M, Klatt J, Krauss KW, Kutzbach L, Lohila A, Mitra B, Morin TH, Nilsson MB, Niu S, Noormets A, Oechel WC, Peichl M, Peltola O, Reba ML, Richardson AD, Runkle BRK, Ryu Y, Sachs T, Schӓfer KVR, Schmid HP, Shurpali N, Sonnentag O, Tang ACI, Ueyama M, Vargas R, Vesala T, Ward EJ, Windham-Myers L, Wohlfahrt G, Zona D (2019) FLUXNET-CH4 synthesis activity. Bull Am Meteorol Soc 100:2607–2632

    Google Scholar 

  • Kochendorfer J, Meyers TP, Frank J, Massman WJ, Heuer MW (2012) How well can we measure the vertical wind speed? Implications for fluxes of energy and mass. Boundary-Layer Meteorol 145:383–398

    Google Scholar 

  • Kretschmer SI, Karpovitsch JV (1973) Maloinercionnyj ultrafioletovyj vlagometer (Sensitive ultraviolet hygrometer). Izv AN SSSR Fiz Atm Okeana 9:642–645

    Google Scholar 

  • Leclerc MY, Foken T (2014) Footprints in micrometeorology and ecology. Springer, New York, p 239

    Google Scholar 

  • Leclerc MY, Thurtell GW (1990) Footprint prediction of scalar fluxes using a Markovian analysis. Boundary-Layer Meteorol 52:247–258

    Google Scholar 

  • Lee X (2000) Air motion within and above forest vegetation in non-ideal conditions. For Ecol Manag 135:3–18

    Google Scholar 

  • Lemon E, Allen LH, Muller L (1970) Carbon dioxide exchange of a tropical rain forest. 2. Bioscience 20:1054–1059

    Google Scholar 

  • Lenschow DH, Pearson R, Stankov BB (1981) Estimating the ozone budget in the boundary layer by use of aircraft measurements of ozone eddy flux and mean concentration. J Geophys Res 86:7291–7297

    Google Scholar 

  • Leuning R (2007) The correct form of the Webb, Pearman and Leuning equation for eddy fluxes of trace gases in steady and non-steady state, horizontally homogeneous flows. Boundary-Layer Meteorol 123:263–267

    Google Scholar 

  • Leuning R, van Gorsel E, Massman WJ, Iassac PR (2012) Reflections on the surface energy imbalance problem. Agric Forest Meteorol 156:65–74

    Google Scholar 

  • Lindroth A, Mölder M, Lagergren F (2010) Heat storage in forest biomass improves energy balance closure. Biogeoscience 7:301–313

    Google Scholar 

  • Livingston GP, Hutchinson GL, Spartalian K (2006) Trace gas emission in chambers: a non-steady-state diffusion model. Soil Sci Soc Amer J 70:1459–1469

    Google Scholar 

  • Mahrt L, Sun J, Blumen W, Delany T, Oncley S (1998) Nocturnal boundary-layer regimes. Boundary-Layer Meteorol 88:255–278

    Google Scholar 

  • Mammarella I, Kolari P, Vesala T, Rinne J (2007) Determining the contribution of vertical advection to the net ecosystem exchange at Hyytiälä forest, Finland. Tellus 59B:900–909

    Google Scholar 

  • Marcolla B, Cescatti A (2018) Geometry of the hemispheric radiometric footprint over plant canopies. Theor. Appl. Climatology 134:981–990

    Google Scholar 

  • Martini L, Stark B, Hunsalz G (1973) Elektronisches Lyman-Alpha-Feuchtigkeitsmessgerät. Z Meteorol 23:313–322

    Google Scholar 

  • Mauder M, Foken T, Cuxart J (2020) Surface-energy-balance closure over land: a review. Boundary-Layer Meteorol. https://doi.org/10.1007/s10546-020-00529-6

    Article  Google Scholar 

  • McMillen RT (1983) Eddy correlation calculations done in real-time. Preprints 16th conf agric forest meteorol. Amer Meteorol Soc, Boston, pp 111–113

  • McMillen RT (1988) An eddy-correlation technique with extended applicability to non-simple terrain. Bound-Layer Meteorol 43:231–245

    Google Scholar 

  • McNeil DD, Shuttleworth WJ (1975) Comparative measurements of the eddy fluxes over a pine forest. Boundary-Layer Meteorol 9:297–313

    Google Scholar 

  • Meijer G, Boogaarts MGH, Jongma RT, Parker DH, Wodtke AM (1994) Coherent cavity ring down spectroscopy. Chem Phys Lett 217:112–116

    Google Scholar 

  • Meyers TP, Hollinger SE (2004) An assessment of storage terms in the surface energy balance of maize and soybean. Agric Forest Meteorol 125:105–115

    Google Scholar 

  • Mitsuta Y (1958) Some results of direct measurements of momentum flux in the atmospheric boundary layer by sonic anemometer. J Meteorol Soc Jpn 48:29–35

    Google Scholar 

  • Mitsuta Y, Ohtaki E, Tsukamoto O, Maitani T, Volkov Y, Elagina LG, Desjardins RL (1990) Intercomparison of fast response carbon dioxide sensors under field conditions. Bull Disas Prev Res Inst Kyoto U 40:131–142

    Google Scholar 

  • Monin AS, Obukhov AM (1954) Basic regularity in turbulent mixing in the surface layer of the atmosphere. USSR Acad Sci, Geophys. Inst, #24

  • Monson R, Baldocchi DD (2014) Terrestrial biosphere-atmosphere fluxes. Cambridge University Press, New York, p 487

    Google Scholar 

  • Monteith JL (1965) Evaporation and environment. In: Fogg GE (ed) The state and movement of water in living organisms. Academic Press, New York, pp 205–234

    Google Scholar 

  • Monteith JL, Szeicz G (1960) The carbon-dioxide flux over a field of sugar beet. Q J R Meteorol Soc 86:205–214

    Google Scholar 

  • Motha RP, Verma SB, Rosenberg NJ (1980) Flux-angle distribution of momentum and sensible heat over a vegetated surface. Agric Meteorol 22:121–127

    Google Scholar 

  • Müller M, Hraus M, Ruuskanen TM, Schnitzhofer R, Bamberger I, Kaser L, Titzmann T, Hörnagl L, Wohlfahrt G, Karl T, Hansel A (2010) First eddy covariance flux measurements by PTR-TOF. Atmos Meas Tech 3:387–395

    Google Scholar 

  • Munn RE (1966) Descriptive micrometeorology. Academic Press, New York, p 245

    Google Scholar 

  • Nelson AJ, Koloutsou-Vakakis S, Rood MJ, Myles L, Lehmann C, Bernacchi C, Balasubramanian S, Joo E, Heuer M, Vieira-Filho M, Lin J (2017) Season-long ammonia flux measurements above fertilized corn in central Illinois, USA, using relaxed eddy accumulation. Agric Forest Meteorol 239:202–212

    Google Scholar 

  • Neumann HH, den Hartog G (1985) Eddy correlation measurements of atmospheric fluxes of ozone, sulphur, and particulates during the Champaign intercomparison study. J Geophys Res 90:2097–2110

    Google Scholar 

  • Obukhov AM (1951) Characteristics of the micro-structure of the wind in the surface layer of the atmosphere. Izv Acad Sci USSR Geophys 3:49–68

    Google Scholar 

  • O’Dell D, Sauer TJ, Hicks BB, Thierfelder C, Lambert DM, Logan J, Eash NS (2015) A short-term assessment of carbon dioxide fluxes under contrasting agricultural and soil management practices in Zimbabwe. J Agric Sci 7:32–48

    Google Scholar 

  • Ohtaki E (1984) The budget of carbon-dioxide variance in the surface-layer over vegetated fields. Boundary-Layer Meteorol 29:251–261

    Google Scholar 

  • Ohtaki E, Matsui T (1982) Infrared device for simultaneous measurement of fluctuations of atmospheric carbon-dioxide and water–vapor. Boundary-Layer Meteorol 24:109–119

    Google Scholar 

  • Oliphant AJ, Grimmond CSB, Zutter HN, Schmid HP, Suc H-B, Scott SL, Offerle B, Randolph JC, Ehmand J (2004) Heat storage and energy balance fluxes for a temperate deciduous forest. Agric Forest Meteorol 126:185–201

    Google Scholar 

  • Oncley SP, Delany AC, Horst TW, Tans PP (1993) Verification of flux measurement using relaxed eddy accumulation. Atmos Environ A 27:2417–2426

    Google Scholar 

  • Papale D, Reichstein M, Aubinet M, Canfora E, Bernhofer C, Kutsch W, Longdoz B, Rambal S, Valentini R, Vesala T, Yakir D (2006) Towards a standardized processing of Net Ecosystem Exchange measured with eddy covariance technique: algorithms and uncertainty estimation. Biogeoscience 3:571–583

    Google Scholar 

  • Park JH, Goldstein AH, Timkovsky J, Fares S, Weber R, Karlik J, Holzinger R (2013) Active atmosphere-ecosystem exchange of the vast majority of detected volatile organic compounds. Science 341:643–647

    Google Scholar 

  • Parson D, Bunker AF (1952) A recording computer for the direct measurement of the turbulent heat exchange in the atmosphere. In: Hewson EW (ed) Paper #4.4 in international symposium on atmospheric turbulence in the boundary layer, pp 369–380

  • Pekour MS, Wesely ML, Cook DR, Martin TJ (2006) A study of the recursive filter for computing scalar eddy covariances. Agric Forest Meteorol 136:101–107

    Google Scholar 

  • Peltola O, Hensen A, Helfter C, Belelli Marchesini ZL, Bosveld FC, van den Bulk WCM, Elbers JA, Haapanala S, Holst J, Laurila T, Lindroth A, Nemitz E, Röckmann T, Vermeulen AT, Mammarella I (2014) Evaluating the performance of commonly used gas analysers for methane eddy covariance flux measurements: the InGOS inter-comparison field experiment. Biogeosci Discuss 11:797–852

    Google Scholar 

  • Penman HL (1948) Natural evaporation over open water, bare soil and grass. Proc R Soc Lond A 193:120–145

    Google Scholar 

  • Philip JR (1959) The theory of local advection:1. J Meteorol 16:535–547

    Google Scholar 

  • Poulos GS, Blumen W, Fritts DC, Lundquist JK, Sun J, Burns SP, Nappo C, Banta R, Newsom R, Cuxart J, Terradellas E, Balsley B, Jensen M (2002) CASES-99: a comprehensive investigation of the stable nocturnal boundary layer. Bull Am Meteorol Soc 83:555–581

    Google Scholar 

  • Priestley CHB (1959) Turbulent transfer in the lower atmosphere. Chicago University Press, Chicago, p 130

    Google Scholar 

  • Priestley CHB, Swinbank WC (1947) Vertical transport of heat by turbulence in the atmosphere. Proc R Soc Lond A 189:543–561

    Google Scholar 

  • Priestley CHB, Taylor JR (1972) On the assessment of surface heat flux and evaporation using large-scale parameters. Monthly Weath Rev 100:81–82

    Google Scholar 

  • Pryor SC, Berthelmie RJ, Sørensen LL, Larsen SE, Sempreviva AM, Grönholm T, Rannik Ü, Kulmala M, Vesala T (2008) Upward fluxes of particles over forests: when, where, why? Telus 60B:372–380

    Google Scholar 

  • Raupach MR (1978) Infrared fluctuation hygrometry in atmospheric surface layer. Q J R Meteorol Soc 104:309–322

    Google Scholar 

  • Raupach MR (1979) Anomalies in flux–gradient relationships over forest. Boundary-Layer Meteorol 16:467–486

    Google Scholar 

  • Raupach MR, Legg BJ (1984) The uses and limitations of flux–gradient relationships in micrometeorology. Agric Water Manag 8:119–131

    Google Scholar 

  • Reynolds O (1895) On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Philos Trans R Soc Lond A 186:123–164

    Google Scholar 

  • Rinne HJI, Guenther AB, Warneke C, de Gouw J, Luxembourg SL (2001) Disjunct eddy covariance technique for trace gas flux measurements. Geophys Res Lett 28:3139–3142

    Google Scholar 

  • Ritchie JT, Burnett E (1968) A precision weighing lysimeter for row crop water use studies. Agron J 60:545–549

    Google Scholar 

  • Rochette P, Hutchinson GL (2005) Measurement of soil respiration in situ: chamber techniques. Chapt 12; pp 247–286 in ‘Publications from USDA-ARS/UNL Faculty.’ 1379

  • Rochette P, Gregorich EG, Desjardins RL (1992) Comparison of static and dynamic closed chambers for measurement of soil respiration under field conditions. Can J Soil Sci 72:605–609

    Google Scholar 

  • Roderick ML, Farquhar GD (2002) The cause of decreased pan evaporation over the past 50 years. Science 298:1410–1411

    Google Scholar 

  • Saugier B, Ripley EA (1978) Evaluation of aerodynamic method of determining fluxes over a natural grassland. Q J R Meteorol Soc 104:257–270

    Google Scholar 

  • Savage MJ, McInnes KJ, Heilman JL (1996) The ‘footprints’ of eddy correlation sensible heat flux density, and other micrometeorological measurements. S Afr J Sci 92:137–142

    Google Scholar 

  • Saylor RD, Baker BD, Lee P, Tong D, Pan L, Hicks BB (2019) The particle dry deposition component of total deposition from air quality models: right, wrong or uncertain? Tellus B 71(1):1550324. https://doi.org/10.1080/16000889.2018.1550324

    Article  Google Scholar 

  • Schmid HP, Oke TR (1988) Estimating the source area of a turbulent flux measurement over a patchy surface. In: Proceedings, 8th symposium on turbulence and diffusion, San Diego, April, 1988. Amer Meteorol Soc, pp 123–126

  • Schmid HP, Oke TR (1990) A model to estimate the source area contributing to turbulent exchange in the surface layer over patchy terrain. Q J R Meteorol Soc 116:965–988

    Google Scholar 

  • Schmidt W (1925) Der Massenaustausch in freier Luft und verwandte Erscheinungen. Henri Grand Verlag, Hamburg, p 118

    Google Scholar 

  • Schotland RM (1955) The measurement of wind velocity by sonic means. J Meteorol 12:386–390

    Google Scholar 

  • Scrase FJ (1930) Some characteristics of eddy motion in the atmosphere, Geophysical Memoirs, #52. Meteorological Office, London, p 56

    Google Scholar 

  • Sellers PJ, Hall FG (1992) FIFE in 1992—RESULTS, scientific gains, and future-research directions. J Geophys Res Atmos 97:19091–19109

    Google Scholar 

  • Sellers PJ, Hall F, Margolis H, Kelly B, Baldocchi D, den Hartog G, Cihlar J, Ryan MH, Goodison B, Crill P, Ranson KJ, Lettenmaier D, Wickland DE (1995) Boreal ecosystem atmosphere (BOREAS): an overview and early results from the 1994 field year. Bull Am Meteorol Soc 76:1549–1577

    Google Scholar 

  • Sellers PJ, Hall FG, Kelly RD, Black A, Baldocchi D, Berry J, Ryan M, Ranson KJ, Crill PM, Lettenmaier DP, Margolis H, Cihlar J, Newcomer J, Fitzjarrald D, Jarvis PG, Gower T, Halliwell D, Williams D, Goodison B, Wickland DE, Guertin FE (1997) Boreas in 1997: scientific results; experimental overview and future directions. J Geophys Res 102:28731–28770

    Google Scholar 

  • Shaw RH (1985) On diffusive and dispersive fluxes in forest canopies. In: Hutchison BA, Hicks BB (eds) The Forest Atmosphere Interaction. D. Reidel, Boston, pp 407–419

    Google Scholar 

  • Shaw WJ, Spicer CW, Kenny DV (1998) Eddy correlation fluxes of trace gases using a tandem mass spectrometer. Atmos Environ 32:2887–2898

    Google Scholar 

  • Shuttleworth WJ (2007) Putting the ‘vap’ into evaporation. Hydrol Earth System Sci 11:210–244

    Google Scholar 

  • Shuttleworth WJ, Gash JHC, Lloyd CR, Moore CJ, Roberts J, De OA, Filho AOM, Fisch G, Filho VPS, Ribeiro MNG, Molion LCB, Sa LDA, Nobre JCA, Cabral OMR, Patel SR, Moraes JC (1984) Eddy-correlation measurements of energy partition for Amazonian forest. Q J R Meteorol Soc 110:1143–1162

    Google Scholar 

  • Speer RE, Peterson KA, Ellestad TG, Durham JL (1985) Test of a prototype eddy accumulator for measuring atmospheric vertical fluxes of water vapor and particulate sulfur. J Geophys Res Atmos 90:2119–2122

    Google Scholar 

  • Spirig C, Neftel A, Ammann C, Dommen J, Grabmer W, Thielmann A, Schaub A, Beauchamp J, Wisthaler A, Hansel A (2005) Eddy covariance flux measurements of biogenic VOCs during ECHO 2003 using proton transfer reaction mass spectrometry. Atmos Chem Phys 5:465–481

    Google Scholar 

  • Stewart JB, Thom AS (1973) Energy budgets in pine forest. Q J R Meteorol S 99:154–170

    Google Scholar 

  • Suomi V (1957) Sonic anemometer—University of Wisconsin. In: Lettau HH, Davidson B (eds) Exploring the atmosphere’s first mile, vol 1. Pergamon Press, New York, pp 256–266

    Google Scholar 

  • Sutton OG (1953) Micrometeorology. McGraw-Hill, New York, p 333

    Google Scholar 

  • Sutton MA, Pitcairn CER, Fowler D (1993) The exchange of ammonia between the atmosphere and plant communities. Adv Ecol Res 24:301–393

    Google Scholar 

  • Swinbank WC (1952) The measurement of the vertical transfer of heat, water vapor and momentum by eddies in the lower atmosphere with some results. In: Hewson EW (ed) Paper #4.3 in international symposium on atmospheric turbulence in the boundary layer, pp 355–368

  • Swinbank WC, Dyer AJ (1967) An experimental study in micrometeorology. Q J R Meteorol Soc 93:494–500

    Google Scholar 

  • Taylor RJ (1958) A linear, unidirectional anemometer of rapid response. J Sci Instrum 35:47–52

    Google Scholar 

  • Taylor RJ, Dyer AJ (1958) An instrument for measuring evaporation from natural surfaces. Nature 181:408–409

    Google Scholar 

  • Taylor RJ, Webb EK (1955) A mechanical computer for micrometeorological research. CSIRO Division of Meteorological Physics technical paper No. 6, 16 p

  • Tollmien W (1935) Über die Korrelation der Geschwindigkeitskomponenten in periodisch schwankenden Wirbelverteilungen. ZAMM J Appl Math Mech 15:96–100

    Google Scholar 

  • Tsvang LR, Koprov BM, Zubkovskii SL, Dyer AJ, Hicks BB, Miyake M, Stewart RW, McDonald JW (1973) A comparison of turbulence measurements by different instruments; Tsimlyansk field experiment 1970. Boundary-Layer Meteorol 3:499–521

    Google Scholar 

  • Tsvang LR, Zubkovskii SL, Kader BA, Kallistratova MA, Foken T, Gerstmann V, Przadka A, Ya P, Ya Z, Keder J (1985) International turbulence comparison experiment (ITCE-81). Boundary-Layer Meteorol 31:325–348

    Google Scholar 

  • Tsvang LR, Fedorov MM, Kader BA, Zubkovskij SL, Foken T, Richter SH, Zelený J (1991) Turbulent exchange over a surface with chessboard-type inhomogeneities. Boundary-Layer Meteorol 55:141–160

    Google Scholar 

  • Valentini R, Mugnozza GS, De Angelis P, Matteucci G (1995) Coupling water sources and carbon metabolism of natural vegetation at integrated time and space scales. Agric Forest Meteorol 73:297–306

    Google Scholar 

  • Van de Wiel BJH, Moene AF, Steeneveld GJ, Baas P, Bosveld FC, Holtslag AAM (2010) A conceptual view on intertial oscillations and nocturnal low-level jets. J Atmos Sci 67:2679–2689

    Google Scholar 

  • Van Ulden AP, Wieringa J (1996) Atmospheric boundary-layer research at Cabauw. Boundary-Layer Meteorol 78:39–69

    Google Scholar 

  • Verma SB, Baldocchi DD, Anderson DE, Matt DR, Clement RE (1986) Eddy fluxes of CO2, water vapor and sensible heat over a deciduous forest. Boundary-Layer Meteorol 36:71–91

    Google Scholar 

  • Webb EK, Pearman GI, Leuning R (1980) Correction of flux measurements for density effects due to heat and water vapor transfer. Q J R Meteorol Soc 106:85–100

    Google Scholar 

  • Werle P (1998) A review of recent advances in semiconductor laser based gas monitors. Spectrochim Acta A Mol Spectrosc 54:197–236

    Google Scholar 

  • Werle P, Kormann R (2001) Fast chemical sensor for eddy-correlation measurements of methane emissions from rice paddy fields. Appl Optics 40:846–858

    Google Scholar 

  • Wesely ML (1970) Eddy correlation measurements in the atmospheric surface layer over agricultural crops. PhD dissertation, University of Wisconsin

  • Wesely ML, Hicks BB, Dannevik WP, Frisella S, Husar RB (1977) An eddy-correlation measurement of particulate deposition from the atmosphere. Atmos Environ 11:561–563

    Google Scholar 

  • Wesely ML, Eastman JA, Cook DR, Hicks BB (1978) Daytime variations of ozone eddy fluxes to maize. Boundary-Layer Meteorol 15:361–373

    Google Scholar 

  • Wesely ML, Eastman JA, Stedman DH, Yalvak ED (1982) An eddy-correlation measurement of NO2 flux to vegetation and comparison to O3 flux. Atmos Environ 16:815–820

    Google Scholar 

  • Wesely ML, Cook DR, Hart RL (1983) Fluxes of gases and particles above a deciduous forest in wintertime. Boundary-Layer Meteorol 27:237–255

    Google Scholar 

  • Wieringa J (1980) A revaluation of the Kansas mast influence on measurements of stress and cup anemometer overspeeding. Boundary-Layer Meteorol 18:411–430

    Google Scholar 

  • Wilczak JM, Oncley SP, Stage SA (2001) Sonic anemometer tilt correction algorithms. Boundary-layer Meteorol 99:127–150

    Google Scholar 

  • Wilson KB, Baldocchi DD (2001) Comparing independent estimates of carbon dioxide exchange over five years at a deciduous forest in the southern United States. J Geophys Res 106:34167–34178

    Google Scholar 

  • Wilson JD, Ward DP, Thurtell GW, Kidd GE (1982) Statistics of atmospheric-turbulence within and above a corn canopy. Boundary-Layer Meteorol 24:495–519

    Google Scholar 

  • Wilson KB, Goldstein A, Falge E, Aubinet M, Baldocchi D, Berbigier P, Bernhofer C, Ceulemans R, Dolman H, Field C, Grelle A, Ibrom A, Law BE, Kowalski A, Meyers T, Moncrieff J, Monson R, Oechel W, Tenhunen J, Valentini R, Verma S (2002) Energy balance closure at FLUXNET sites. Agric Forest Meteorol 113:223–243

    Google Scholar 

  • Wofsy SC, Goulden ML, Munger JW, Fan S-M, Bakwin PS, Daube BC, Bassow SL, Bazzaz FA (1993) Net exchange of CO2 in a midlatitude forest. Science 260:1314–1317

    Google Scholar 

  • Wyngaard JC (1981) Cup, propeller, vane. and sonic anemometers in turbulence research. Ann Rev Fluid Mech 13:399–423

    Google Scholar 

  • Xiang K, Li Y, Horton R, Feng H (2020) Similarity and difference of potential evapotransiration and reference crop evapotranspiration—a review. Agric Water Man. https://doi.org/10.1016/j.agwat.2020.106043

    Article  Google Scholar 

  • Yamamoto S, Murayama S, Saigusa N, Kondo H (1999) Seasonal and inter-annual variation of CO2 flux between a temperate forest and the atmosphere in Japan. Tellus 51B:402–413

    Google Scholar 

  • Zahn A, Weppner J, Widmann H, Schlote-Holubek K, Burger B, Kuhner T, Franke H (2012) A fast and precise chemiluminescence ozone detector for eddy flux and airborne application. Atmos Meas Tech 5:363–375

    Google Scholar 

  • Zilitinkevich SS, Chalikov DV (1968a) On momentum heat and moisture exchange in the process of interaction between the atmosphere and the underlying surface. Izv Acad Sci USSR Atmos Ocean Phys 4:765–785

    Google Scholar 

  • Zilitinkevich SS, Chalikov DV (1968b) On the determination of the universal wind and temperature profiles in the surface layer of the atmosphere. Izv Acad Sci USSR Atmos Ocean Phys 4:294–302

    Google Scholar 

Download references

Acknowledgements

Input provided by Dr. Thomas Foken is greatly appreciated. One of us received support from the California Agricultural Experiment Station, McIntire-Stennis capacity Grant and the Ameriflux Management Project, US Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce B. Hicks.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hicks, B.B., Baldocchi, D.D. Measurement of Fluxes Over Land: Capabilities, Origins, and Remaining Challenges. Boundary-Layer Meteorol 177, 365–394 (2020). https://doi.org/10.1007/s10546-020-00531-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-020-00531-y

Keywords

Navigation