Skip to main content

Advertisement

Log in

Characterization of Wind Meandering in Low-Wind-Speed Conditions

  • Research Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Investigation of low-wind cases observed during the Urban Turbulent Project campaign (Torino, Italy) and at the Santa Maria meteorological station (Santa Maria, Brazil) provides insight into the wind-meandering phenomenon, i.e. large, non-turbulent oscillations of horizontal wind speed and temperature. Meandering and non-meandering cases are identified through analysis of the Eulerian autocorrelation functions of the horizontal wind-velocity components and temperature. When all three autocorrelation functions oscillate, meandering is present. As with weak turbulence, meandering shows no dependence on stability but is influenced by presence of buildings and depends on wind speed. We show that, while the standard deviation of the horizontal velocity is always large in low-wind conditions, the standard deviation of the vertical velocity shows very different behaviour in meandering and non-meandering conditions. In particular, the value of the ratio of the standard deviations of the vertical and horizontal velocities typifies the meandering condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Acevedo O, Fitzjarrald D (2001) The early evening surface-layer transition: temporal and spatial variability. J Atmos Sci 58:2650–2667

    Article  Google Scholar 

  • Acevedo O, Oliveira P, Santos D, Silva G, Medeiros L, Quadro M, Fuentes M, Bastos M, Nedel A (2013) Estudo da turbulencencia atmosferica noturna sobre coxilhas (estancia): resultados preliminares. Ciencia e Natura 35:392–395

    Google Scholar 

  • Agarwal P, Yadav A, Gulati A, Raman S, Rao S, Singh M, Nigam S, Reddy N (1995) Surface layer turbulence processes in low wind speeds over land. Atmos Environ 29:2089–2098

    Article  Google Scholar 

  • Anfossi D, Oettl D, Degrazia G, Goulart A (2005) An analysis of sonic anemometer observations in low wind speed conditions. Boundary-Layer Meteorol 114:179–203

    Article  Google Scholar 

  • Anfossi D, Alessandrini S, Trini Castelli S, Ferrero E, Oettl D, Degrazia G (2006) Tracer dispersion simulation in low wind speed conditions with a new 2-D Langevin equation system. Atmos Environ 40:7234–7245

    Article  Google Scholar 

  • Belušić D, Mahrt L (2008) Estimation of length scales from mesoscale networks. Tellus A 60:706–715

    Google Scholar 

  • Belušić D, Güttler I (2010) Can mesoscale models reproduce meandering motions? Q J R Meteorol Soc 136:553–565

    Google Scholar 

  • Brusasca G, Tinarelli G, Anfossi D (1992) Particle model simulation of diffusion in low wind speed stable conditions. Atmos Environ 26 A:707–723

    Article  Google Scholar 

  • Carvalho J, Vilhena M (2005) Pollutant dispersion simulation for low wind speed condition by the ils method. Atmos Environ 39:6282–6288

    Article  Google Scholar 

  • Cassardo C, Sacchetti D, Morselli M, Anfossi D, Brusasca G, Longhetto A (1995) A study of the assessment of air temperature, and sensible and latent heat fluxes from sonic anemometer observations. Nuovo Cimento 18C:419–440

    Article  Google Scholar 

  • Cirillo M, Poli A (1992) An inter comparison of semi empirical diffusion models under low wind speed, stable conditions. Atmos Environ 26 A:765–774

    Article  Google Scholar 

  • Davies B, Thomson D (1999) Comparisons of some parameterizations of wind direction variability with observations. Atmos Environ 33:4909–4917

    Article  Google Scholar 

  • Etling D (1990) On plume meandering under stable stratification. Atmos Environ 8:1979–1985

    Article  Google Scholar 

  • Ferrero E, Anfossi D, Richiardone R, Trini Castelli S, Mortarini L, Carretto E, Muraro M, Bande S, Bertoni D (2009) Urban Turbulence Project. the field experiment campaign. Internal Report ISAC-TO/02-2009 Institute of Atmospheric Sciences and Climate - CNR, Bologna, Italy, p pag. 37

  • Frenkiel F (1953) Turbulent diffusion: mean concentration distribution in a flow field of homogeneous turbulence. Adv App Mech 3:61–107

    Article  Google Scholar 

  • Gifford F (1959) Statistical properties of a fluctuating plume dispersion model. Adv Geophys 6:117–137

    Article  Google Scholar 

  • Goulart A, Degrazia G, Acevedo O, Anfossi D (2007) Theoretical considerations of meandering wind in simplified conditions. Boundary-Layer Meteorol 125:279–287

    Article  Google Scholar 

  • Hanna S (1983) Lateral turbulence intensity and plume meandering during stable conditions. J Clim App Meteorol 22:1424–1430

    Article  Google Scholar 

  • Hanna S (1990) Lateral dispersion in light wind stable conditions. Nuovo Cimento C 13:889–894

    Article  Google Scholar 

  • Hoover J, Stauffer D, Richardson S, Mahrt L, Gaudet B, Suarez A (2014) Submeso motions within the stable boundary layer and their relationships to local indicators and synoptic regime in moderately complex terrain. J Appl Meteorol 54:352–369

    Article  Google Scholar 

  • Joffre S, Laurila T (1988) Standard deviations of wind speed and direction from observations over a smooth surface. J Appl Meteorol 27:550–561

    Article  Google Scholar 

  • Kaimal J, Finnigan J (1994) Atmospheric boundary layer flows. Oxford University Press, Oxford

    Google Scholar 

  • Kristensen L, Jensen N, Peterson E (1982) Lateral dispersion of pollutants in a very stable atmosphere—the effect of meandering. Atmos Environ 15:837–844

    Article  Google Scholar 

  • Luhar A (2012) Lagrangian modeling of the atmosphere, AGU Geophysical Monograph, vol 200. American Geophysical Union, chap Lagrangian particle modelling of dispersion in light winds, pp 37–51

  • Mahrt L (2007) Weak-wind mesoscale meandering in the nocturnal boundary layer. Environ Fluid Mech 7:331–347

    Article  Google Scholar 

  • Mahrt L (2011) The near-calm stable boundary layer. Boundary-Layer Meteorol 140:343–360

    Article  Google Scholar 

  • Mahrt L (2014) Stably stratified atmospheric boundary layers. Annu Rev Fluid Mech 46:23–45

    Article  Google Scholar 

  • Mahrt L, Sun J, Stauffer D (2015) Dependence of turbulent velocities on wind speed and stratification. Boundary-Layer Meteorol 155:55–71

    Article  Google Scholar 

  • Mortarini L, Ferrero E, Falabino S, Trini Castelli S, Richiardone R, Anfossi D (2013) Low-frequency processes and turbulence structure in a perturbed boundary layer. Q J R Meteorol Soc 139:1059–1072. doi:10.1002/qj.2015

    Article  Google Scholar 

  • Mortarini L, Anfossi D (2015) Proposal of an empirical velocity spectrum formula in low-wind speed conditions. Q J R Meteorol Soc 141:85–97. doi:10.1002/qj.2336

    Article  Google Scholar 

  • Mortarini L, Maldaner S, Moor L, Stefanello M, Acevedo O, Degrazia G, Anfossi D (2015) Temperature auto-correlation and spectra functions in low-wind meandering conditions. submitted to the Q J R Meteorol Soc

  • Murgatroyd R (1969) Estimations from geostrophic trajectories of horizontal diffusivity in the mid-latitude troposphere and lower stratosphere. Q J R Meteorol Soc 95:40–62

    Article  Google Scholar 

  • Oettl D, Almbauer R, Sturm P (2001) A new method to estimate diffusion in stable, low-wind conditions. J Appl Meteorol 40:259–268

    Article  Google Scholar 

  • Oettl D, Goulart A, Degrazia G, Anfossi D (2005) A new hypothesis on meandering atmospheric flows in low wind speed conditions. Atmos Environ 39:1739–1748

    Google Scholar 

  • Qian W, Venkatram A (2011) Performance of steady-state dispersion models under low wind-speed conditions. Boundary-Layer Meteorol 138:475–491

    Article  Google Scholar 

  • R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  • Roberti DR, Acevedo OC, Moraes OLL (2012) A brazilian network of carbon flux stations. Eos Transa Am Geophys Union 93(21):203–203. doi:10.1029/2012EO210005

    Article  Google Scholar 

  • Sagendorf J, Dickson D (1974) Diffusion under low wind speed inversion conditions. noaa technical memo-erl-arl-52,. Technical report, Air Resources Laboratories, Silver Spring, MD

  • Sharan M, Yadav A, Singh M (1995) Comparison of sigma schemes for estimation of air pollutant dispersion in low winds. Atmos Environ 29:2051–2059

    Article  Google Scholar 

  • Sharan M, Modani M, Yadav A (2003) Atmospheric dispersion: an overview of mathematical modeling framework. Proc Indian Natl Sci Acad A 69:725–744

    Google Scholar 

  • Sharan M, Singh M, Yadav A, Agarwal P, Nigam S (1996) A mathematical model for dispersion of air pollutants in low windcond itions. Atmos Environ 30:1209–1220

    Article  Google Scholar 

  • Steeneveld G, Holtslag A (2011) Air quality in the 21st century, Nova Science, chap Meteorological aspects of air quality, pp 67–114

  • Sun J, Mahrt L, Banta R, Pichugina Y (2012) Turbulence regimes and turbulence intermittency in the stable boundary layer during cases-99. J Atmos Sci 69:338–351

    Article  Google Scholar 

  • Teixeira J, Ferreira J, Miranda P, Haack T, Doyle J, R Salgado APS (2004) A new mixing-length formulation for the parameterization of dry convection: implementation and evaluation in a mesoscale model. Mon Weather Rev 132:2698–2707

    Article  Google Scholar 

  • Trini Castelli S, Falabino S, Mortarini L, Ferrero E, Richiardone R, Anfossi D (2014) Experimental investigation of the surface layer parameters in low-wind conditions in a suburban area. Q J R Meteorol Soc 140:2023–2036

    Article  Google Scholar 

  • Trini Castelli S, Falabino S (2013) Parameterization of the wind velocity fluctuation standard deviations in the surface layer in low-wind conditions. Meteorol Atmos Phys 119:91–107. doi:10.1007/s00703-012-0219-3

    Article  Google Scholar 

  • Vickers D, Mahrt L, Belušić D (2008) Particle simulations of dispersion using observed meandering and turbulence. Acta Geophys 56(1):234–256

    Article  Google Scholar 

  • Vickers D, Mahrt L (2007) Observations of the cross-wind velocity variance in the stable boundary layer. Environ Fluid Mech 7:55–71

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Mortarini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mortarini, L., Stefanello, M., Degrazia, G. et al. Characterization of Wind Meandering in Low-Wind-Speed Conditions. Boundary-Layer Meteorol 161, 165–182 (2016). https://doi.org/10.1007/s10546-016-0165-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-016-0165-6

Keywords

Navigation