Skip to main content
Log in

Ventilation Processes in a Three-Dimensional Street Canyon

  • Research Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The ventilation processes in three different street canyons of variable roof geometry were investigated in a wind tunnel using a ground-level line source. All three street canyons were part of an urban-type array formed by courtyard-type buildings with pitched roofs. A constant roof height was used in the first case, while a variable roof height along the leeward or windward walls was simulated in the two other cases. All street-canyon models were exposed to a neutrally stratified flow with two approaching wind directions, perpendicular and oblique. The complexity of the flow and dispersion within the canyons of variable roof height was demonstrated for both wind directions. The relative pollutant removals and spatially-averaged concentrations within the canyons revealed that the model with constant roof height has higher re-emissions than models with variable roof heights. The nomenclature for the ventilation processes according to quadrant analysis of the pollutant flux was introduced. The venting of polluted air (positive fluctuations of both concentration and velocity) from the canyon increased when the wind direction changed from perpendicular to oblique, irrespective of the studied canyon model. Strong correlations (\(>\)0.5) between coherent structures and ventilation processes were found at roof level, irrespective of the canyon model and wind direction. This supports the idea that sweep and ejection events of momentum bring clean air in and detrain the polluted air from the street canyon, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Addepalli B, Pardyjak ER (2014) A study of flow fields in step-down street canyons. Environ Fluid Mech. doi:10.1007/s10652-014-9366-z

  • Baik JJ, Kim JJ (2002) On the escape of pollutants from urban street canyons. Atmos Environ 36(3):527–536. doi:10.1016/S1352-2310(01)00438-1

    Article  Google Scholar 

  • Baik JJ, Park RS, Chun HY, Kim JJ (2000) A laboratory model of urban street-canyon flows. J Appl Meteorol 39(9):1592–1600. doi:10.1175/1520-0450(2000)039<1592:ALMOUS>2.0.CO;2

  • Barlow JF, Harman IN, Belcher SE (2004) Scalar fluxes from urban street canyons. Part 1: Laboratory simulation. Boundary-Layer Meteorol 113:369–385

    Article  Google Scholar 

  • Belcher SE (2005) Mixing and transport in urban areas. Philos Trans Roy Soc A 363(October):2947–2968. doi:10.1098/rsta.2005.1673

    Article  Google Scholar 

  • Bezpalcova K (2006) Physical modelling of flow and diffusion in urban canopy. PhD thesis, Charles University in Prague, Prague

  • Blackman K, Perret L, Savory E (2015) Effect of upstream flow regime on street canyon flow mean turbulence statistics. Environ Fluid Mech 15(4):823–849. doi:10.1007/s10652-014-9386-8

    Article  Google Scholar 

  • Blocken B (2015) Computational fluid dynamics for urban physics: importance, scales, possibilities, limitations and ten tips and tricks towards accurate and reliable simulations. Build Environ 91:219–245. doi:10.1016/j.buildenv.2015.02.015

    Article  Google Scholar 

  • Britter RE, Hanna SR (2003) Flow and dispersion in urban areas. Annu Rev Fluid Mech 35(1):469–496. doi:10.1146/annurev.fluid.35.101101.161147

    Article  Google Scholar 

  • Cai XM, Barlow JF, Belcher SE (2008) Dispersion and transfer of passive scalars in and above street canyons—large-eddy simulations. Atmos Environ 42(23):5885–5895. doi:10.1016/j.atmosenv.2008.03.040

    Article  Google Scholar 

  • Carpentieri M, Robins AG (2015) Influence of urban morphology on air flow over building arrays. J Wind Eng Ind Aerodyn 145:61–74. doi:10.1016/j.jweia.2015.06.001

    Article  Google Scholar 

  • Carpentieri M, Hayden P, Robins AG (2012) Wind tunnel measurements of pollutant turbulent fluxes in urban intersections. Atmos Environ 46:669–674. doi:10.1016/j.atmosenv.2011.09.083

    Article  Google Scholar 

  • Cheng H, Castro IP (2002) Near-wall flow development after a step change in surface roughness. Boundary-Layer Meteorol 105(August 2001):411–432. doi:10.1023/A:1020355306788

    Article  Google Scholar 

  • Counihan J (1975) Adiabatic atmospheric boundary layer: a review and analysis of data from period 1880–1972. Atmos Environ 9(10):871–905

    Article  Google Scholar 

  • Dabberdt WF (1991) Street canyon dispersion: sensitivity to block shape and entrainment. Atmos Environ 25:11431153

    Article  Google Scholar 

  • Fackrell JE, Robins AG (1982) Concentration fluctuations and fluxes in plumes from point sources in a turbulent boundary layer. J Fluid Mech 117:26

    Article  Google Scholar 

  • Grimmond CSB, Oke TR (1999) Aerodynamic properties of urban areas derived from analysis of surface form. J Appl Meteorol 38(9):1262–1292. doi:10.1175/1520-0450(1999)038<1262:APOUAD>2.0.CO;2

  • Gu ZL, Zhang YW, Cheng Y, Lee SC (2011) Effect of uneven building layout on air flow and pollutant dispersion in non-uniform street canyons. Build Environ 46(12):2657–2665. doi:10.1016/j.buildenv.2011.06.028

    Article  Google Scholar 

  • Hoydysh GW, Dabberdt FW (1988) Kinematics and dispersion characteristics of flows in asymmetric street canyons. Atmos Environ 22:2677–2689

    Article  Google Scholar 

  • Hoydysh G W, Griffiths A R, Ogawa Y (1974) A scale model study of the dispersion of pollution in street canyons. In: 67th annual meeting of the Air Pollution Control Association

  • Huang YD, He WR, Kim CN (2015) Impacts of shape and height of upstream roof on airflow and pollutant dispersion inside an urban street canyon. Environ Sci Pollut Res 22(3):2117–2137. doi:10.1007/s11356-014-3422-6

    Article  Google Scholar 

  • Kastner-Klein P, Plate E (1999) Wind-tunnel study of concentration fields in street canyons. Atmos Environ 33(24–25):3973–3979. doi:10.1016/S1352-2310(99)00139-9

    Article  Google Scholar 

  • Kastner-Klein P, Berkowicz R, Britter R (2004) The influence of street architecture on flow and dispersion in street canyons. Meteorol Atmos Phys 87(1–3):121–131. doi:10.1007/s00703-003-0065-4

    Google Scholar 

  • Katul G, Poggi D, Cava D, Finnigan J (2006) The relative importance of ejections and sweeps to momentum transfer in the atmospheric boundary layer. Boundary-Layer Meteorol 120:367–375. doi:10.1007/s10546-006-9064-6

    Article  Google Scholar 

  • Klein P, Leitl B, Schatzmann M (2007) Driving physical mechanisms of flow and dispersion in urban canopies. Int J Climatol 27(September):1887–1907. doi:10.1002/joc.1581

    Article  Google Scholar 

  • Kukacka L, Nosek S, Kellnerova R, Jurcakova K (2012) Janour Z (2012) Wind tunnel measurement of turbulent and advective scalar fluxes: a case study on intersection ventilation. Sci World J 381:357. doi:10.1100/2012/381357

    Google Scholar 

  • Kukacka L, Fuka V, Nosek S, Kellnerova R, Janour Z (2014) Ventilation of idealised urban area, LES and wind tunnel experiment. EPJ Web Conf 62:1–10. doi:10.1051/epjconf/20146702062

    Google Scholar 

  • Leitl BM, Meroney RN (1997) Car exhaust dispersion in a street canyon: numerical critique. J Wind Eng Ind Aerodyn 67:293–304

    Article  Google Scholar 

  • Li D, Bou-Zeid E (2011) Coherent structures and the dissimilarity of turbulent transport of momentum and scalars in the unstable atmospheric surface layer. Boundary-Layer Meteorol 140(2):243–262. doi:10.1007/s10546-011-9613-5

    Article  Google Scholar 

  • Liu CH, Leung DYC, Barth MC (2005) On the prediction of air and pollutant exchange rates in street canyons of different aspect ratios using large-eddy simulation. Atmos Environ 39:1567–1574. doi:10.1016/j.atmosenv.2004.08.036

    Google Scholar 

  • Liu CH, Ng CT, Wong CC (2015) A theory of ventilation estimate over hypothetical urban areas. J Hazard Mater 296:9–16

    Article  Google Scholar 

  • Louka P, Belcher SE, Harrison RG (2000) Coupling between air flow in streets and the well-developed boundary layer aloft. Atmos Environ 34(16):2613–2621. doi:10.1016/S1352-2310(99)00477-X

    Article  Google Scholar 

  • Madalozzo DMS, Braun AL, Awruch AM, Morsch IB (2014) Numerical simulation of pollutant dispersion in street canyons: geometric and thermal effects. Appl Math Model 38(24):5883–5909. doi:10.1016/j.apm.2014.04.041

    Article  Google Scholar 

  • Meroney RN, Pavageau M, Rafailidis S, Schatzmann M (1996) Study of line source characteristics for 2-D physical modelling of pollutant dispersion in street canyons. J Wind Eng Ind Aerodyn 62:37–56

    Article  Google Scholar 

  • Michioka T, Takimoto H, Sato A (2014) Large-Eddy simulation of pollutant removal from a three-dimensional street canyon. Boundary-Layer Meteorol 150:259–275. doi:10.1007/s10546-013-9870-6

    Article  Google Scholar 

  • Moon K, Hwang JM, Kim BG, Lee C, Ji Choi (2014) Large-eddy simulation of turbulent flow and dispersion over a complex urban street canyon. Environ Fluid Mech 14(6):1381–1403

    Article  Google Scholar 

  • Nelson MA, Pardyjak ER, Klewicki JC, Pol SU, Brown MJ (2007) Properties of the wind field within the Oklahoma City Park Avenue street canyon. Part I: Mean flow and turbulence statistics. J Appl Meteorol Clim 46(12):2038–2054. doi:10.1175/2006JAMC1427.1

    Article  Google Scholar 

  • Nozu T, Tamura T (2012) LES of turbulent wind and gas dispersion in a city. J Wind Eng Ind Aerodyn 104–106:492–499

    Article  Google Scholar 

  • Perret L, Savory E (2013) Large-Scale structures over a single street canyon immersed in an urban-type boundary layer. Boundary-Layer Meteorol 148(1):111–131. doi:10.1007/s10546-013-9808-z

    Article  Google Scholar 

  • Rafailidis S (1997) Influence of building areal density and roof shape on the wind characteristics above a town. Boundary-Layer Meteorol 85(2):255–271. doi:10.1023/A:1000426316328

    Article  Google Scholar 

  • Rafailidis S, Schatzmann M (1995) Concentration measurements with different roof patterns in street canyons with aspect ratios B/H=1/2 and B/H=1. Technical report, Meteorology Institute, University of Hamburg, Hamburg

  • Robins A, Scaperdas A, Savory E, Savory E, Grigoriadis D, Scaperdas A, Robins A, Grigoriadis D (2002) Spatial variability and source-receptor relations at a street intersection. Water Air Soil Poll Focus 2(5):381–393. doi:10.1023/A:1021360007010

    Article  Google Scholar 

  • Salizzoni P, Marro M, Soulhac L, Grosjean N, Perkins JR (2011) Turbulent transfer between street canyons and the overlying atmospheric boundary layer. Boundary-Layer Meteorol 141(3):393–414. doi:10.1007/s10546-011-9641-1

    Article  Google Scholar 

  • Savory E, Perret L, Rivet C (2013) Modelling considerations for examining the mean and unsteady flow in a simple urban-type street canyon. Meteorol Atmos Phys 121(1–2):1–16. doi:10.1007/s00703-013-0254-8

    Article  Google Scholar 

  • Schatzmann M, Leitl B (2011) Issues with validation of urban flow and dispersion CFD models. J Wind Eng Ind Aerodyn 99(4):169–186. doi:10.1016/j.jweia.2011.01.005

    Article  Google Scholar 

  • Snyder WH (1981) Guidelines for fluid modelling of atmospheric diffusion. EPA office of Air quality, USA

  • Stull RB (1988) An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers, Dordrecht, 666 pp

  • Takimoto H, Inagaki A, Kanda M, Sato A, Michioka T (2013) Length-scale similarity of turbulent organized structures over surfaces with different roughness types. Boundary-Layer Meteorol 147(2):217–236. doi:10.1007/s10546-012-9790-x

    Article  Google Scholar 

  • Theurer W (1999) Typical building arrangements for urban air pollution modelling. Atmos Environ 33(24–25):4057–4066. doi:10.1016/S1352-2310(99)00147-8

    Article  Google Scholar 

  • VDI (2000) Physical modelling of flow and dispersion processes in the atmospheric boundary layer—application of wind tunnels. Verein Deutcher Ingenieure (VDI), Berlin

    Google Scholar 

  • Willmarth WW (1975) Structure of turbulence in boundary layers. Arch Appl Mech 15:159–254

    Google Scholar 

  • Xie X, Huang Z, Wang JS (2005) Impact of building configuration on air quality in street canyon. Atmos Environ 39(25):4519–4530. doi:10.1016/j.atmosenv.2005.03.043

    Article  Google Scholar 

  • Xie X, Huang Z, Wang J (2006) The impact of urban street layout on local atmospheric environment. Build Environ 41(10):1352–1363

    Article  Google Scholar 

  • Yang Y, Shao Y (2008) Numerical simulations of flow and pollution dispersion in urban atmospheric boundary layers. Environ Modell Softw 23(7):906–921. doi:10.1016/j.envsoft.2007.10.005

    Article  Google Scholar 

  • Zajic D, Fernando HJS, Brown MJ, Pardyjak ER (2015) On flows in simulated urban canopies. Environ Fluid Mech 15(2):275–303. doi:10.1007/s10652-013-9311-6

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Charles University in Prague (project GAUK No. 535412), the Czech Science Foundation GACR (project GAP101/12/1554 and GAP15-18964S) and the institutional support RVO: 61388998.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Štěpán Nosek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nosek, Š., Kukačka, L., Kellnerová, R. et al. Ventilation Processes in a Three-Dimensional Street Canyon. Boundary-Layer Meteorol 159, 259–284 (2016). https://doi.org/10.1007/s10546-016-0132-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-016-0132-2

Keywords

Navigation