Skip to main content
Log in

Roughness Lengths at Four Stations Within the Micrometeorological Network over the Indian Monsoon Region

  • Notes & Comments
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The aerodynamic roughness length \((z_{0})\) is estimated here for four locations, Bangalore, Ranchi, Hyderabad and Tirunelveli of the Indian region, using micrometeorological measurements from the instrumentation network established during the programme, “Prediction of Regional Weather using Observational meso-Network and Atmospheric Modelling (PRWONAM)”. The average \(z_{0}\) values estimated are \(0.04 \pm 0.02\) and \(0.06 \pm 0.03\) m for Bangalore for the summer and the winter seasons respectively; and \(0.009 \pm 0.007\) and \(0.04 \pm 0.02\) m for Ranchi. For Hyderabad and Tirunelveli locations, average \(z_{0}\) values for the summer season are \(0.8 \pm 0.1\) and \(0.02 \pm 0.02\) m respectively. This value of \(z_{0}\) for Hyderabad is consistent with the range 0.2–2.1 m quoted for fetches mainly covered with trees. The \(z_{0}\) values for Bangalore, Ranchi and Tirunelveli are consistent with similar terrain pattern in the prevailing wind sectors at the experiment locations and are also in the range 0.006–0.08 m quoted in the literature for homogeneous land surfaces.

For the first time, the thermal roughness length \((z_\mathrm{h})\) is estimated for the Indian region. The average \(z_\mathrm{h}\) estimated for Bangalore for the summer monsoon season is \(0.006 \pm 0.006\) m, one order of magnitude smaller than the corresponding \(z_{0}\). The ratio \(z_{0}/z_\mathrm{h}\) is 6.8 for Bangalore, and comparable with values quoted in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Alappattu DP, Kunhikrishnan PK, Aloysius M, Mohan M (2009) A case study of atmospheric boundary layer features during winter over a tropical in land station—Kharagpur \((22.32^{\circ } \text{ N }\), \(87.32^{\circ } \text{ E })\). J Earth Syst Sci 118:281–293. doi:10.1007/s12040-009-0028-3

    Article  Google Scholar 

  • Bosveld FC (1997) Derivation of fluxes from profiles over a moderately homogeneous forest. Boundary-Layer Meteorol 84:289–327. doi:10.1023/A:1000453629876

    Article  Google Scholar 

  • Businger JA, Wyngaard JC, Izumi Y, Bradley EF (1971) Flux–profile relationships in the atmospheric surface layer. J Atmos Sci 28:181–189. doi:10.1175/1520-0469(1971)028<2.0.CO;2

  • Chamberlain AC (1966) Transport of gases to and from grass and grass-like surface. Proc R Soc Lond A 290:236–265. doi:10.1098/rspa.1966.0047

    Article  Google Scholar 

  • Chamberlain AC (1968) Transport of gases to and from surfaces with bluff and wave-like roughness elements. Q J R Meteorol Soc 94:318–332. doi:10.1002/qj.49709440108

    Article  Google Scholar 

  • Colin J, Faivre R (2010) Aerodynamic roughness length estimation from very high-resolution imaging LIDAR observations over the Heihe basin in China. Hydrol Earth Syst Sci 14:2661–2669. doi:10.5194/hess-14-2661-2010

    Article  Google Scholar 

  • Dorman JL, Sellers PJ (1989) A global climatology of albedo, roughness length and stomatal resistance for atmospheric general circulation models as represented by the simple biosphere model (SiB). J Appl Meteorol 28:833–855. doi:10.1175/1520-0450(1989)028<2.0.CO;2

  • Dudhia J, Bresch JF (2002) A global version of the PSU-NCAR mesoscale model. Mon Weather Rev 130:2989–3007. doi:10.1175/1520-0493(2002)130<2.0.CO;2

  • Dwivedi AK, Chandra S, Kumar M, Kumar S, Kumar Kiran NVP (2014) Spectral analysis of wind and temperature components during lightning in pre-monsoon season over Ranchi. Meteorol Atmos Phys 127:95–105. doi:10.1007/s00703-014-0346-0

    Article  Google Scholar 

  • Dyer AJ, Hicks BB (1970) Flux-gradient relationships in the constant flux layer. Q J R Meteorol Soc 96:715–721. doi:10.1002/qj.49709641012

    Article  Google Scholar 

  • Fazu C, Schwerdtfeger P (1989) Flux–gradient relationships for aerodynamic and heat over a rough natural surface. Q J R Meteorol Soc 115:335–352. doi:10.1002/qj.49711548607

    Article  Google Scholar 

  • Garratt JR (1978) Transfer characteristics for a heterogeneous surface of large aerodynamic roughness. Q J R Meteorol Soc 104:491–502. doi:10.1002/qj.49710444019

    Article  Google Scholar 

  • Garratt JR (1980) Surface influence upon vertical profiles in the atmospheric near-surface layer. Q J R Meteorol Soc 106:803–819. doi:10.1002/qj.49710645011

    Article  Google Scholar 

  • Garratt JR, Hicks BB (1973) Momentum, heat and water vapour transfer to and from natural and artificial surfaces. Q J R Meteorol Soc 99:680–687. doi:10.1002/qj.49709942209

    Article  Google Scholar 

  • Hopwood WP (1996) Observations and parametrization of aerodynamic transfer in heterogeneous terrain consisting of regularly spaced obstacles. Boundary-Layer Meteorol 81:217–243. doi:10.1007/BF02430330

    Article  Google Scholar 

  • Kaimal JC, Finnigan JJ (1994) Atmospheric boundary layer flows: their structure and measurement. Oxford University Press, New York, 289 pp

  • Lettau H (1969) Note on aerodynamic roughness—parameter estimation on the basis of roughness-element description. J Appl Meteorol 8:828–832. doi:10.1175/1520-0450(1969)008<2.0.CO;2

  • Mahrt L (1996) The bulk aerodynamic formulation over heterogeneous surfaces. Boundary-Layer Meteorol 78:87–119. doi:10.1007/BF00122488

    Article  Google Scholar 

  • Mahrt L (2008) The influence of transient flow distortion on turbulence in stable weak-wind conditions. Boundary-Layer Meteorol 127:1–16. doi:10.1007/s10546-007-9244-z

    Article  Google Scholar 

  • Manikiam B, Murthy TGK (2008) Technology development for atmospheric research and applications. ISRO Publication, Indian Space Research Organisation, Bangalore

  • Miller MJ, Beljaars ACM, Palmer TN (1992) The sensitivity of the ECMWF model to the parameterization of evaporation from the tropical oceans. J Clim 5:418–434. doi:10.1175/1520-0442(1992)005<2.0.CO;2

  • Nadeau DF, Brutsaert W, Parlange MB, Bou-Zeid E, Barrenetxea G, Couach O, Boldi MO, Selker JS, Vetterli M (2009) Estimation of urban sensible heat flux using a dense wireless network of observations. Environ Fluid Mech 9:635–653. doi:10.1007/s10652-009-9150-7

    Article  Google Scholar 

  • Norman JM, Becker F (1995) Terminology in thermal infrared remote sensing of natural surfaces. Agric For Meteorol 77:153–166. doi:10.1016/0168-1923(95)02259-Z

    Article  Google Scholar 

  • Owen PR, Thomson WR (1963) Heat transfer across rough surfaces. J Fluid Mech 15:321–334. doi:10.1017/S002211206300028

    Article  Google Scholar 

  • Panofsky HA, Dutton JA (1984) Atmospheric turbulence—models and methods for engineering application. Wiley, New York, 397 pp

  • Patil MN (2006) Aerodynamic drag coefficient and roughness length for three seasons over a tropical western Indian station. Atmos Res 80:280–293. doi:10.1016/j.atmosres.2005.10.005

    Article  Google Scholar 

  • Prigent C, Tegen I, Aires F, Marticorena B, Zribi M (2005) Estimation of the aerodynamic roughness length in arid and semi-arid regions over the globe with the ERS scatterometer. J Geophys Res 110:1–12. doi:10.1029/2004JD005370

    Google Scholar 

  • Ramachandran R, Prakash JWJ, Gupta KS, Nair KN, Kunhikrishnan PK (1994) Variability of surface roughness and turbulence intensities at a coastal site in India. Boundary-Layer Meteorol 70:385–400. doi:10.1007/BF00713777

    Article  Google Scholar 

  • Rao KG (1996) Roughness length and drag coefficient at two MONTBLEX-90 tower stations. Proc Indian Acad Sci Earth Planet Sci 105:273–287. doi:10.1007/BF02841883

    Google Scholar 

  • Rao KG (2008a) PRWONAM–an innovative approach to accurate mesoscale weather prediction for Southern Peninsula. Monogram, Indian Space Research Organisation, Bangalore, 76 pp

  • Rao KG (2008b) PRWONAM for mesoscale research in India and predictions over Shar-Kalpakkam-Bangalore region. In: Manikiam B, Murthy TGK (eds) Technology development for atmospheric research and applications. ISRO Publication, Indian Space Research Organisation, Bangalore, pp 387–462

  • Rao KG, Reddy NN (2012) PRWONAM Experiment Facility establishment at Bangalore, Gadanki and Sriharikota: characterization of surface layer during convective conditions of the Indian summer monsoon. Scientific Report. ISRO-SR:01, Indian Space Research Organisation, Bangalore

  • Rao KG, Ramakrishna G, Reddy NN (2011a) Impact of meso-net observations on short-term prediction of intense weather systems during PRWONAM: Part I-On wind variations. J Atmos Sol Terr Phys 73:965–985. doi:10.1016/j.jastp.2010.08.019

    Article  Google Scholar 

  • Rao KG, Reddy NN, Muhsin M, Ramakrishna G, Jacob R, Rao TN, Kumar M, Ghosh A, Dutta G, Emperumal K, Ananth AG, Reddy KK, Ramgopal K, Amudha, Bhuyan K, Kundu SS, Murali S, Ram S, Singh VC, Bopanna MB, Raman MNA (2011b) Surface layer measurements from the network of mini boundary layer masts (MBLM) under PRWONAM: instrumentation, data acquisition, quality analysis. Scientific Report. Indian Space Research Organisation, Bangalore

  • Rao KG, Muhsin M, Reddy NN, Rao TN, Kumar M, Ananth AG, Ghosh A, Dutta G, Reddy KK, Emperumal K, Ramgopal K, Murali S, Singh VC, Kundu SS, Bopanna MB (2012) Characterization of surface layer at 14 locations differing in land surface patterns with measurements from instrumented mini boundary layer mast network (MBLM-NET) establishment during PRWONAM. Scientific Report. ISRO-SR:02, Indian Space Research Organisation, Bangalore, 128 pp

  • Sellers PJ, Mintz Y, Sud YC, Dalcher A (1986) A simple biosphere model (SIB) for use within general circulation models. J Atmos Sci 43:505–531. doi:10.1175/1520-0469(1986)043<2.0.CO;2

  • Sikka DR, Narasimha R (1995) Genesis of the monsoon trough boundary layer experiment (MONTBLEX). Proc Indian Acad Sci (Earth Planet Sci) 104:157–187. doi:10.1007/BF02839270

    Google Scholar 

  • Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Duda MG, Huang X-Y, Wang W, Powers JG (2008) A description of the advanced research WRF Version 3. NCAR Tech. Note/TN-475+STR, 113 pp

  • Stull RB (1988) An introduction to boundary layer meteorology, 1st edn. Kluwer, Dordrecht, 670 pp

  • Sugita M, Brutsaert W (1990) Regional surface fluxes from remotely sensed skin temperature and lower boundary layer measurements. Water Resour Res 26:2937–2944. doi:10.1029/WR026i012p02937

    Article  Google Scholar 

  • Thom AS (1972) Momentum, mass and heat exchange of vegetation. Q J R Meteorol Soc 98:124–134. doi:10.1002/qj.49709841510

    Article  Google Scholar 

  • Vernekar KG, Sinha S, Sadani LK, Sivaramakrishnan S, Parasnis SS, Brij Mohan, Dharmaraj S, Patil MN, Pillai JS, Murthy BS, Debaje SB, Bagavathsingh A (2003) An overview of the land surface processes experiment (Laspex) over a semi-arid region of India. Boundary-Layer Meteorol 106:561–572. doi:10.1023/A:1021283503661

    Article  Google Scholar 

  • Wiernga J (1993) Representative roughness parameters for homogeneous terrain. Boundary-Layer Meteorol 63:323–363. doi:10.1007/BF00705357

    Article  Google Scholar 

  • WMO (2008) Guide to meteorological instruments and methods of observation, 7th edn. WMO Rep. 8. World Meteorological Organization, Geneva, 716 pp

  • Yanlian Z, Xiaomin S, Zhilin Z, Renhua Z, Jing T, Yunfen L, Dexin G, Guofu Y (2006) Surface roughness length dynamic over several different surfaces and its effects on modeling fluxes. Sci China Ser D Earth Sci 49:262–272. doi:10.1007/s11430-006-8262-x

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr S Gurubaran, Mr Emperumal, Dr Manoj Kumar and Dr Gopa Dutta for their help in setting up of the MBLMs in their institutional premises. Authors acknowledge support from Indian Space Research Organization, Bangalore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kusuma G. Rao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reddy, N.N., Rao, K. Roughness Lengths at Four Stations Within the Micrometeorological Network over the Indian Monsoon Region. Boundary-Layer Meteorol 158, 151–164 (2016). https://doi.org/10.1007/s10546-015-0080-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-015-0080-2

Keywords

Navigation