Skip to main content
Log in

Vertical Energy and Momentum Fluxes in the Centre of Athens, Greece During a Heatwave Period (Thermopolis 2009 Campaign)

  • Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The atmospheric energy budget in the centre of Athens, Greece was determined during the Thermopolis 2009 campaign in order to investigate the development of the urban heat island. Heatwaves during summer are a common occurrence in this large conurbation. Micrometeorological data from a tower were acquired in a densely built central district, and net all-wave radiation, sensible heat, latent heat and momentum flux densities were derived by the eddy-covariance method and also estimated using Monin–Obukhov similarity relationships. Under the prevailing hot and dry conditions, sensible heat-flux density was on average five times larger than the latent heat-flux density. The anthropogenic contribution to the energy budget was also determined on the basis of the acquired data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allen L, Lindberg F, Grimmond CSB (2011) Global to city scale urban anthropogenic heat flux: model and variability. Int J Climatol 31(13):1990–2005

    Article  Google Scholar 

  • Allwine KJ, Leach MJ, Stockham LW, Shinn JS, Hosker RP, Bowers JF, Pace JC (2004) Overview of Joint Urban 2003 - an atmospheric dispersion study in Oklahoma City. In: Symposium on planning, nowcasting, and forecasting in the urban zone. American Meteorological Society, Seattle. Preprints, CD-ROM, J7.1

  • Allwine KJ, Shinn JH, Streit GE, Clawson KL, Brown M (2002) Overview of URBAN 2000: a multiscale field study of dispersion through an urban environment. Bull Am Meteorol Soc 83(4):521–536

    Article  Google Scholar 

  • Aoyagi T, Kayaba N, Seino N (2012) Numerical simulation of the surface air temperature change caused by increases of urban area, anthropogenic heat, and building aspect ratio in the Kanto-Koshin area. J Meteorol Soc Jpn 90(B):11–31

    Article  Google Scholar 

  • Bohnenstengel SI, Hamilton I, Davies M, Belcher SE (2014) Impact of anthropogenic heat emissions on London’s temperatures. Q J R Meteorol Soc 140(679):687–698

    Article  Google Scholar 

  • Brutsaert W (1982) Evaporation into the atmosphere: theory, history and applications. D. Reidel, Dordrecht

    Book  Google Scholar 

  • Brutsaert W (1998) Land-surface water vapor and sensible heat-flux: spatial variability, homogeneity, and measurement scales. Water Resour Res 34(10):2433–2442

    Article  Google Scholar 

  • Businger JA, Wyngaard JC, Izumi Y, Bradley EF (1971) Flux–profile relationships in the atmospheric surface layer. J Atmos Sci 28(2):181–189

    Article  Google Scholar 

  • Christen A, Vogt R (2004) Energy and radiation balance of a central European city. Int J Climatol 24(11):1395–1421

    Article  Google Scholar 

  • Christen A, Bernhofer C, Parlow E, Rotach MW, Vogt R (2003) Partitioning of turbulent fluxes over different urban surfaces. In: Proceedings of 5th international conference for urban climate, Łódź, Poland, 1–5 September, pp 285–288

  • Crutzen P (2004) New directions: the growing urban heat and pollution “island” effect—impact on chemistry and climate. Atmos Environ 38(21):3539–3540

    Article  Google Scholar 

  • Daglis IA, Rapsomanikis S, Kourtidis K, Melas D, Papayannis A, Keramitsoglou I, Giannaros T, Amiridis V, Petropoulos G, Georgoulias A, Sobrino JA, Manunta P, Gröbner J, Paganini M, Bianchi R (2010a) Mapping the Urban Heat Island (UHI) effect In Athens: results Obtained from the UHI and Thermopolis 2009 Projects. In: Proceedings of EGU, at Vienna, Austria, pp 05-2010

  • Daglis IA, Rapsomanikis S, Kourtidis K, Melas D, Papayannis A, Keramitsoglou I, Giannaros T, Amiridis V, Petropoulos G, Georgoulias A, Sobrino JA, Manunta P, Gröbner J, Paganini M, Bianchi R (2010b) In: Proceedings of the ‘ESA living planet symposium’, Bergen, Norway 28 June–2 July 2010 (ESA SP-686, December 2010)

  • Demuzere M, De Ridder K, Van Lipzig NPM (2008) Modeling the energy balance in Marseille: sensitivity to roughness length parameterizations and thermal admittance. J Geophys Res D 113(D16120):1–19

    Google Scholar 

  • Doran JC, Berkowitz CM, Coulter RL, Shaw WJ, Spicer CW (2003) The 2001 Phoenix Sunrise experiment: vertical mixing and chemistry during the morning transition in Phoenix. Atmos Environ 37:2365–2377

    Article  Google Scholar 

  • Eurostat (2004) Urban Audit. Methodological handbook, Theme 1. General Statistics. Office for Official Publications of the European Communities, Luxembourg, p 88

  • Ficher B, Joffre S, Kukkonen J, Piringer M, Rotach MW, Schatzmann M (eds) (2005) Meteorology applied to urban air pollution problems. Final report of COST-715 Action. ISBN 954-9526-30-5. Demetra Ltd Publishers, Sofia, 243 pp

  • Foken T (2008) Micrometeorology. Springer, Heidelberg, 320 pp

  • Giannaros TM, Melas D, Daglis IA, Keramitsoglou I, Kourtidis K (2013) Numerical study of the urban heat island over Athens (Greece) with the WRF model. Atmos Environ 73:103–111

    Article  Google Scholar 

  • Graf A, Boer A, Moene A, Vereecken H (2014) Intercomparison of methods for the simultaneous estimation of zero-plane displacement and aerodynamic roughness length from single-level eddy-covariance data. Boundary-Layer Meteorol 151(2):373–387

    Article  Google Scholar 

  • Grimmond CSB, Oke TR (1999a) Aerodynamic properties of urban areas derived from analysis of surface form. J Appl Meteorol 38(9):1262–1292

    Article  Google Scholar 

  • Grimmond CSB, Oke TR (1999b) Heat storage in urban areas: local-scale observations and evaluation of a simple model. J Appl Meteorol 38(7):922–940

    Article  Google Scholar 

  • Grimmond CSB, Oke TR (2002) Turbulent heat-fluxes in urban areas: observations and a local-scale urban meteorological parameterization scheme (LUMPS). J Appl Meteorol 41(7):792–810

    Article  Google Scholar 

  • Grimmond CSB, Cleugh HA, Oke TR (1991) An objective urban heat storage model and its comparison with other schemes. Atmos Environ Part B 25(3):311–326

    Article  Google Scholar 

  • Grimmond CSB, King TS, Roth M, Oke TR (1998) Aerodynamic roughness of urban areas derived from wind observations. Boundary-Layer Meteorol 89(1):1–24

    Article  Google Scholar 

  • Grimmond CSB, Salmond JA, Oke TR, Offerle B, Lemonsu A (2004) Flux and turbulence measurements at a densely built-up site in Marseille: heat, mass (water and carbon dioxide), and momentum. J Geophys Res 109:D24101

  • Harrison RM, Rapsomanikis S, Turnbull A (1989) A land-surface exchange in a chemically-reactive system; surface fluxes of \(\text{ HNO }_{3}\), HCl and \(\text{ NH }_{3}\). Atmos Environ 23:1795–1980

    Article  Google Scholar 

  • Højstrup J (1993) A statistical data screening procedure. Meas Sci Technol 4(2):153–157

    Article  Google Scholar 

  • Kormann R, Meixner F (2001) An analytical footprint model for non-neutral stratification. Boundary-Layer Meteorol 99(2):207–224

    Article  Google Scholar 

  • Lee SH, Song CK, Baik JJ, Park SU (2009) Estimation of anthropogenic heat emission in the Gyeong-In region of Korea. Theor Appl Climatol 96(3–4):291–303

    Article  Google Scholar 

  • Li D, Bou-Zeid E, De Bruin HR (2012) Monin–Obukhov similarity functions for the structure parameters of temperature and humidity. Boundary-Layer Meteorol 145(1):45–67

    Article  Google Scholar 

  • Martano P (2000) Estimation of surface roughness length and displacement height from single-level sonic anemometer data. J Appl Meteorol 39(5):708–715

    Article  Google Scholar 

  • Masson V, Grimmond CSB, Oke TR (2002) Evaluation of the town energy balance (TEB) scheme with direct measurements from dry districts in two cities. J Appl Meteorol 41(10):1011–1026

    Article  Google Scholar 

  • Masson V, Gomes L, Pigeon G, Liousse C, Pont V, Lagouarde JP, Voogt J, Salmond J, Oke TR, Hidalgo J, Legain D, Garrouste O, Lac C, Connan O, Briottet X, Lachérade S, Tulet P (2008) The Canopy and Aerosol Particles Interactions in TOulouse Urban Layer (CAPITOUL) experiment. Meteorol Atmos Phys 102(3):135–157

    Article  Google Scholar 

  • Mestayer PG, Durand P, Augustin P, Bastin S, Bonnefond JM, Bénech B, Campistron B, Coppalle A, Delbarre H, Dousset B, Drobinski P, Druilhet A, Fréjafon E, Grimmond CSB, Groleau D, Irvine M, Kergomard C, Kermadi S, Lagouarde JP, Lemonsu A, Lohou F, Long N, Masson V, Moppert C, Noilhan J, Offerle B, Oke TR, Pigeon G, Puygrenier V, Roberts S, Rosant JM, Sanïd F, Salmond J, Talbaut M, Voogt J (2005) The urban boundary-layer field campaign in Marseille (UBL/CLU-ESCOMPTE): set-up and first results. Boundary-Layer Meteorol 114(2):315–365

    Article  Google Scholar 

  • Moncrieff J, Clement R, Finnigan J, Meyers T (2005) Averaging, detrending, and filtering of eddy covariance time series. Handbook of micrometeorology: a guide for surface flux measurement and analysis. Springer, Dordrecht, 265 pp

  • Monin A, Obukhov A (1954) Osnovnye zakonomernosti turbulentnogo peremesivanija v prizemnom sloe atmosfery (Basic laws of turbulent mixing in the atmosphere near the ground). Trudy Geofiz Inst AN SSSR 24(151):163–187

    Google Scholar 

  • Moriwaki R, Kanda M (2004) Seasonal and diurnal fluxes of radiation, heat, water vapor, and carbon dioxide over a suburban area. J Appl Meteorol 43(11):1700–1710

    Article  Google Scholar 

  • Moriwaki R, Kanda M (2006) Flux–gradient profiles for momentum and heat over an urban surface. Theor Appl Climatol 84(1):127–135

    Article  Google Scholar 

  • Narumi D, Kondo A, Shimoda Y (2009) Effects of anthropogenic heat release upon the urban climate in a Japanese megacity. Environ Res 109(4):421–431

    Article  Google Scholar 

  • Neftel A, Spirig C, Ammann C (2008) Application and test of a simple tool for operational footprint evaluations. Environ Pollut 152(3):644–652

    Article  Google Scholar 

  • Nordbo A, Järvi L, Haapanala S, Moilanen J, Vesala T (2013) Intra-city variation in urban morphology and turbulence structure in Helsinki, Finland. Boundary-Layer Meteorol 146(3):469–496

    Article  Google Scholar 

  • Offerle B, Grimmond CSB, Fortuniak K (2005) Heat storage and anthropogenic heat-flux in relation to the energy balance of a central European city centre. Int J Climatol 25(10):1405–1419

    Article  Google Scholar 

  • Offerle B et al (2006a) Temporal variations in heat-fluxes over a central European city centre. Theor Appl Climatol 84(1–3):103–115

    Article  Google Scholar 

  • Offerle B et al (2006b) Intraurban differences of surface energy fluxes in a central European City. J Appl Meteorol 45(1):125–136

    Article  Google Scholar 

  • Oke TR (1988) The urban energy balance. Prog Phys Geogr 12:471–508

    Article  Google Scholar 

  • Oke TR (2006) Instruments and observing methods: Report No. 81: initial guidance to obtain representative meteorological observations at urban sites. World Meteorological Organization, WMO/TD(1250), 51 pp

  • Oke TR, Spronken-Smith RA, Jáuregui E, Grimmond CSB (1999) The energy balance of central Mexico City during the dry season. Atmos Environ 33(24–25):3919–3930

    Article  Google Scholar 

  • Pigeon G, Legain D, Durand P, Masson V (2007) Anthropogenic heat release in an old European agglomeration (Toulouse, France). Int J Climatol 27(14):1969–1981

    Article  Google Scholar 

  • Piringer M, Grimmond CSB, Joffre SM, Mestayer P, Middleton DR, Rotach MW, Baklanov A, De Ridder K, Ferreira J, Guilloteau E, Karppinen A, Martilli A, Masson V, Tombrou M (2002) Investigating the surface energy balance in urban areas—recent advances and future needs. Water Air Soil Pollut 2(5):1–16

    Article  Google Scholar 

  • Rooney GG (2001) Comparison of upwind land use and roughness length measured in the urban boundary layer. Boundary-Layer Meteorol 100(3):469–485

    Article  Google Scholar 

  • Rotach MW, Vogt R, Bernhofer C, Batchvarova E, Christen A, Clappier A, Feddersen B, Gryning SE, Martucci G, Mayer H, Mitev V, Oke TR, Parlow E, Richner H, Roth M, Roulet YA, Ruffieux D, Salmond JA, Schatzmann M, Voogt JA (2005) BUBBLE—an Urban Boundary Layer Meteorology Project. Theor Appl Climatol 81(3):231–261

    Article  Google Scholar 

  • Roth M (2000) Review of atmospheric turbulence over cities. Q J R Meteorol Soc 126(564):941–990

    Article  Google Scholar 

  • Sailor DJ (2011) A review of methods for estimating anthropogenic heat and moisture emissions in the urban environment. Int J Climatol 31(2):189–199

    Article  Google Scholar 

  • Sailor DJ, Lu L (2004) A top-down methodology for developing diurnal and seasonal anthropogenic heating profiles for urban areas. Atmos Environ 38(17):2737–2748

    Article  Google Scholar 

  • Schmid HP (2002) Footprint modeling for vegetation atmosphere exchange studies: a review and perspective. Agric For Meteorol 113(1):159–183

    Article  Google Scholar 

  • Schmid HP, Oke TR (1990) A model to estimate the source area contributing to turbulent exchange in the surface layer over patchy terrain. Q J R Meteorol Soc 116(494):965–988

    Article  Google Scholar 

  • Schotanus P, Nieuwstadt FTM, de Bruin HAR (1983) Temperature measurement with a sonic anemometer and its application to heat and moisture fluxes. Boundary-Layer Meteorol 26(1):81–93

    Article  Google Scholar 

  • Takashi A, Shinji Y, Akira H (2009) Prediction of sensible heat-flux from buildings and urban spaces using a detailed geometry model of a substantial urban area—introduction of a prediction model of anthropogenic heat into an urban heat balance simulation model into an urban heat balance simulation. In: The seventh international conference on urban climate, 29 June–3 July 2009, Yokohama, Japan

  • Velasco E, Pressley S, Grivicke R, Allwine E, Molina L, Lamb B (2011) Energy balance in urban Mexico City: observation and parameterization during the MILAGRO/MCMA-2006 field campaign. Theor Appl Climatol 103(3–4):501–517

    Article  Google Scholar 

  • Vickers D, Mahrt L (1997) Quality control and flux sampling problems for tower and aircraft data. J Atmos Oceanic Technol 14(3):512–526

    Article  Google Scholar 

  • Wilczak J, Oncley S, Stage S (2001) Sonic anemometer tilt correction algorithms. Boundary-Layer Meteorol 99(1):127–150

    Article  Google Scholar 

  • Wolf A, Laca EA (2007) Cospectral analysis of high frequency signal loss in eddy covariance measurements. Atmos Chem Phys Discuss 7:13151–13173

    Article  Google Scholar 

  • Ziomas IC (1998) The mediterranean campaign of photochemical tracers—transport and chemical evolution (MEDCAPHOT-TRACE): an outline. Atmos Environ 32(12):2045–2053

    Article  Google Scholar 

Download references

Acknowledgments

The present work was conducted in the frame of the “Urban Heat Islands and Urban Thermography” project, funded by the European Space Agency (ESA) (Contract No. 21913/08/I-LG). Observational data used in the present study were acquired during the Thermopolis 2009 campaign, funded by ESA (Contract No. 22693/09/I-EC). We also greatly acknowledge the help of two anonymous referees who helped improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Rapsomanikis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rapsomanikis, S., Trepekli, A., Loupa, G. et al. Vertical Energy and Momentum Fluxes in the Centre of Athens, Greece During a Heatwave Period (Thermopolis 2009 Campaign). Boundary-Layer Meteorol 154, 497–512 (2015). https://doi.org/10.1007/s10546-014-9979-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-014-9979-2

Keywords

Navigation