Skip to main content

Advertisement

Log in

Proper Orthogonal Decomposition of Mesoscale Vertical Velocity in the Convective Boundary Layer

  • Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The proper orthogonal decomposition technique is used to analyze wind-profiler observations from the surface to the top of the convective boundary layer. The mesoscale thermal structures are identified by decomposing the vertical velocity measurements into a sequence of characteristic modes with random coefficients. Results show that the first two dominant modes contribute over 85 % to the average kinetic energy. These most energetic modes also show mixed-layer similarity, which indicates that the non-local static instability plays a major role in determining the structure of the most energetic modes. Reconstruction of the vertical wind profiles by the first two dominant modes shows that they represent the most significant thermal structures. The probability distributions of the random coefficients related to these first two dominant modes are also analyzed and found to be Gaussian.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Angevine WM, White AB, Avery SK (1994) Boundary-layer depth and entrainment zone characterization with a boundary-layer profiler. Boundary-Layer Meteorol 68: 375–385

    Article  Google Scholar 

  • Arakawa A, Schubert WH (1974) Interaction of a cumulus cloud ensemble with the large-scale environment, part 1. J Atmos Sci 31: 674–701

    Article  Google Scholar 

  • Bechtold P, Bazile E, Guichard F, Mascart P, Richard E (2001) A mass-flux convection scheme for regional and global models. Q J R Meteorol Soc 127: 869–886

    Article  Google Scholar 

  • Berkooz G, Holmes P, Lumley JL (1993) The proper orthogonal decomposition in the analysis of turbulent flows. Annu Rev Fluid Mech 25: 539–575

    Article  Google Scholar 

  • Chatterjee A (2000) An introduction to the proper orthogonal decomposition. Curr Sci 78: 808–817

    Google Scholar 

  • Cohn SA, Angevine WM (2000) Boundary layer height and entrainment zone thickness measured by lidars and wind-profiling radars. J Appl Meteorol 39: 1233–1247

    Article  Google Scholar 

  • Couvreux F, Hourdin F, Rio C (2010) Resolved versus parameterized boundary-layer plumes. Part I: A parameterization-oriented conditional sampling in large eddy simulations. Boundary-Layer Meteorol 134: 441–458

    Article  Google Scholar 

  • Deardorff JW (1966) The counter-gradient heat flux in the lower atmosphere and in the laboratory. J Atmos Sci 23: 503–506

    Article  Google Scholar 

  • Fairall CW (1991) The humidity and temperature sensitivity of clear-air radars in the convective boundary layer. J Appl Meteorol 30: 1064–1074

    Article  Google Scholar 

  • Glezer A, Kadioglu Z, Pearistein AJ (1989) Development of an extended proper orthogonal decomposition and its application to a time periodically forced plane mixing layer. Phys Fluids A 1: 1363–1373

    Article  Google Scholar 

  • Grimsdell AW, Angevine WM (1998) Convective boundary layer height measurement with wind profilers and comparison to cloud base. J Atmos Ocean Technol 15: 1331–1338

    Article  Google Scholar 

  • Grossman RL, Gamage N (1995) Moisture flux and mixing processes in the daytime continental convective boundary layer. J Geophys Res 100: 25665–25674

    Article  Google Scholar 

  • Holmes P, Lumley JL, Berkooz G (1996) Turbulence, coherent structures, dynamical systems and symmetry. Cambridge University Press, Cambridge, UK, 420 pp

  • Holtslag AAM, Moeng CH (1991) Eddy diffusivity and countergradient transport in the convective atmospheric boundary layer. J Atmos Sci 48: 1690–1698

    Article  Google Scholar 

  • Hourdin F, Couvreux F, Menut L (2002) Parameterization of the dry convective boundary layer based on a mass flux representation of thermals. J Atmos Sci 59: 1105–1123

    Article  Google Scholar 

  • Huang J, Cassiani M, Albertson JD (2009) Analysis of coherent structures within the atmospheric boundary layer. Boundary-Layer Meteorol 131: 147–171

    Article  Google Scholar 

  • Lambert WC, Merceret FJ, Taylor GE, Ward JG (2003) Performance of five 915-MHz wind profilers and an associated automated quality control algorithm in an operational environment. J Atmos Ocean Technol 20: 1488–1495

    Article  Google Scholar 

  • Lenschow DH, Stephens PL (1980) The role of thermals in the convective boundary layer. Boundary-Layer Meteorol 19: 509–532

    Article  Google Scholar 

  • Mason RA, Shirer HN, Wells R, Young GS (2002) Vertical transports by plumes within the moderately convective marine atmospheric surface layer. J Atmos Sci 59: 1337–1355

    Article  Google Scholar 

  • Miao SG, Chen F (2008) Formation of horizontal convective rolls in urban areas. Atmos Res 89: 298–304

    Article  Google Scholar 

  • Moin P, Moser RD (1989) Characteristic-eddy decomposition of turbulence in a channel. J Fluid Mech 200: 471–509

    Article  Google Scholar 

  • Nicolis G, Prigogine I (1977) Self-organization in nonequilibrium systems. Wiley, New York, 491 pp

  • Ochs GR, Lawrence RS (1972) Temperature and \({C_n^{2}}\) profiles measured over land and ocean to 3 km above the surface. NOAA Tech Rep ERL 251-WPL 22, NOAA Environmental Research Laboratories, Boulder, 30 pp

  • Ooyama K (1971) A theory on parameterization of cumulus convection. J Meteorol Soc Jpn 49: 744–756

    Google Scholar 

  • Pergaud J, Masson V, Malardel S, Couvreux F (2009) A parameterization of dry thermals and shallow cumuli for mesoscale numerical weather prediction. Boundary-Layer Meteorol 132: 83–106

    Article  Google Scholar 

  • Réchou A, Durand P (1997) Conditional sampling and scale analysis of the marine atmospheric mixed layer-SOFIA experiment. Boundary-Layer Meteorol 82: 81–104

    Article  Google Scholar 

  • Rinker Jr DK, Young GS (1996) Use of obliquely rotated principal component analysis to identify coherent structures. Boundary-Layer Meteorol 80: 19–47

    Article  Google Scholar 

  • Rio C, Hourdin F (2008) A thermal plume model for the convective boundary layer: representation of cumulus clouds. J Atmos Sci 65: 407–425

    Article  Google Scholar 

  • Rogers RR, Ecklund WL, Cater DA, Gage KS, Ethier SA (1993) Research applications of a boundary-layer wind profiler. Bull Am Meteorol Soc 74: 567–580

    Article  Google Scholar 

  • Schumann U, Moeng CH (1991) Plume budgets in clear and cloudy convective boundary layers. J Atmos Sci 48: 1758–1770

    Article  Google Scholar 

  • Siebesma AP, Teixeira J (2000) An advection-diffusion scheme for the convective boundary layer, description and 1D results. In: Proceedings of 14th symposium on boundary layers and turbulence, Aspen, USA

  • Siebesma AP, Soares PMM, Teixeira J (2007) A combined eddy-diffusivity mass-flux approach for the convective boundary layer. J Atmos Sci 64: 1230–1248

    Article  Google Scholar 

  • Sirovich L (1987a) Turbulence and the dynamics of coherent structures, part 1: coherent structures. Q Appl Math 45: 561–571

    Google Scholar 

  • Sirovich L (1987b) Turbulence and the dynamics of coherent structures, part 2: symmetries and transformations. Q Appl Math 45: 573–582

    Google Scholar 

  • Sirovich L (1987c) Turbulence and the dynamics of coherent structures, part 3: dynamics and scaling. Q Appl Math 45: 583–590

    Google Scholar 

  • Soares P, Miranda P, Siebesma AP, Teixeira J (2004) An eddy-diffusivity/mass-flux parameterization for dry and shallow cumulus convection. Q J R Meteorol Soc 130: 3365–3383

    Article  Google Scholar 

  • Stull RB (1988) An introduction to boundary layer meteorology. Kluwer, Dordrecht, 666 pp

  • Tiedtke M (1989) A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon Weather Rev 177: 1779–1800

    Article  Google Scholar 

  • Tomas S, Masson V (2006) A parameterization of third order moments for dry convective boundary layer. Boundary-Layer Meteorol 120: 437–454

    Article  Google Scholar 

  • Troen IB, Mahrt L (1986) A simple model of the atmospheric boundary layer; sensitivity to surface evaporation. Boundary-Layer Meteorol 37: 129–148

    Article  Google Scholar 

  • Weijers EP, van Delden A, Vugts HF, Meesters AGCA (1995) Characteristics of convective turbulence in the surface layer investigated by principal component analysis. J Appl Meteorol 34: 528–541

    Article  Google Scholar 

  • Weng NQ, Xiao LM, Gong ZB, Ma DA (2001) The theory and experimental verification of 915 M microwave radar. Chin J Quantum Electron 18: 92–96

    Google Scholar 

  • White AB, Senff CJ, Banta RM (1999) A comparison of mixing depths observed by ground-based wind profilers and an airborne lidar. J Atmos Ocean Technol 16: 584–590

    Article  Google Scholar 

  • Williams AG, Hacker JM (1992) The composite shape and structure of coherent eddies in the convective boundary layer. Boundary-Layer Meteorol 61: 213–245

    Article  Google Scholar 

  • Wilson DK (1996) Empirical orthogonal function analysis of the weakly convective atmospheric boundary layer. Part I: Eddy structures. J Atmos Sci 53: 801–822

    Article  Google Scholar 

  • Wyngaard JC, LeMone MA (1980) Behavior of the refractive index structure parameter in the entraining convective boundary layer. J Atmos Sci 37: 1573–1585

    Article  Google Scholar 

  • Young GS (1988a) Convection in the atmospheric boundary layer. Earth Sci Rev 25: 179–198

    Article  Google Scholar 

  • Young GS (1988b) Turbulence structure of the convective boundary layer. Part II: Phoenix 78 aircraft observations of thermals and their environment. J Atmos Sci 45: 727–735

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, L., Hu, F. & Liu, X. Proper Orthogonal Decomposition of Mesoscale Vertical Velocity in the Convective Boundary Layer. Boundary-Layer Meteorol 144, 401–417 (2012). https://doi.org/10.1007/s10546-012-9731-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-012-9731-8

Keywords

Navigation