Skip to main content
Log in

Atmospheric Aerosol Characterization Over Naples During 2000–2003 EARLINET Project: Planetary Boundary-Layer Evolution and Layering

  • Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The evolution of the planetary boundary layer and the influence of local circulation phenomena over Naples (southern Italy, 40.838° N, 14.183° E, 118 m above sea level) have been studied by systematic lidar measurements of aerosol optical properties and vertical distributions carried out from May 2000 to August 2003, in the course of the EARLINET project. In particular, our data show the development of aerosol layers typically located in the range between 1,000 and 2,300 m, with variable thickness. The optical properties of the observed layers have been determined. In order to analyse the evolution of the planetary boundary layer, detailed observations of complete diurnal cycles have also been performed. The analysis of lidar measurements of vertical profiles of wind speed and wind direction and air mass back-trajectories allowed us to characterize the sea-breeze circulation influence on both the planetary boundary-layer evolution and the observed aerosol vertical distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ackermann J (1998) The extinction-to-backscatter ratio of tropospheric aerosol: a numerical study. J Atmos Ocean Technol 15: 1043–1050. doi:10.1175/1520-0426(1998)015<1043:TETBRO>2.0.CO;2

    Article  Google Scholar 

  • Ansmann A, Wandinger U (1992) Combined Raman Elastic Backscatter LIDAR for vertical profiling of moisture, aerosol extinction, backscatter and lidar ratio. Appl Phys B 55: 18–28. doi:10.1007/BF00348608

    Article  Google Scholar 

  • Ansmann A, Riebesell M, Weitkamp C (1990) Measurement of atmospheric aerosol extinction profiles with a Raman lidar. Opt Lett 15(13): 746–748. doi:10.1364/OL.15.000746

    Article  Google Scholar 

  • Ansmann A, Wandinger U, Riebesell M, Weitkamp C, Michaelis W (1992) Independent measurements of extinction and backscatter profiles in cirrus clouds using a combined Raman elastic-backscatter lidar. Appl Opt 31: 7113–7131. doi:10.1364/AO.31.007113

    Article  Google Scholar 

  • Barone G, D’Ambra P, di Serafino D, Giunta G, Murli A, Riccio A (2000) Application of a parallel photochemical air quality model to Campania region (southern Italy). Environ Model Softw 15: 503–511. doi:10.1016/S1364-8152(00)00040-2

    Article  Google Scholar 

  • Barros N, Toll I, Soriano C, Jiménez P, Borrego C, Baldasano JM (2003) Urban photochemical pollution in the Iberian Peninsula: the Lisbon and Barcelona airsheds. J Air Waste Manag Assoc 53: 347–359

    Google Scholar 

  • Bastin S, Drobinski P, Dabas A, Delville P, Reitebuch O, Werner C (2005) Impact of the Rhône and Durance Valleys on sea-breeze circulation in the Marseille area. Atmos Res 74: 303–328. doi:10.1016/j.atmosres.2004.04.014

    Article  Google Scholar 

  • Böckmann C, Wandinger U, Ansmann A, Bösenberg J, Amiridis V, Boselli A et al (2004) Aerosol lidar intercomparison in the framework of the EARLINET project. 2. Aerosol backscatter algorithms. Appl Opt 43: 977–989. doi:10.1364/AO.43.000977

    Article  Google Scholar 

  • Boselli A, Wang X, Armenante M, D’Avino L, Pisani G, Spinelli N (2004) Study of a multy-layered structure of aerosol vertical distribution over Naples performed during EARLINET project. In: Pappalardo G, Amodeo A (eds) Reviewed and revised papers presented at the 22nd ILRC, Matera (Italy), 12–16 July 2002, ESA SP-561, pp 903–906

  • Bösenberg J et al (2001) EARLINET: a European Aerosol Research Lidar Network. In: Dabas A, Loth C, Pelon J (eds) Advanced laser remote sensing. E. poly Cedex, France, pp 155–158

    Google Scholar 

  • Bösenberg J, Mattias V, Amodeo A, Amoiridis V, Ansmann A, Baldasano JM, Balin I, Balis D, Böckmann C, Boselli A, et al (2003) A European Aerosol Research Lidar Network to establish an aerosol climatology. Max Planck Institut für Meteorologie—Technical report n. 348, pp 135–137

  • Browell EV, Ismail S, Shipley S (1985) Ultraviolet DIAL measurements of ozone profiles in regions of spatially inhomogeneous aerosols. Appl Opt 24: 2827–2836. doi:10.1364/AO.24.002827

    Article  Google Scholar 

  • Buzzi A, Fantini M, Malguzzi P, Nerozzi P (1994) Validation of a limited area model in cases of mediterranean cyclogenesis: surface fields and precipitation scores. Meteorol Atmos Phys 53: 137153. doi:10.1007/BF01029609

    Article  Google Scholar 

  • Buzzi A, D’Isidoro M, Davolio S (2003) A case-study of an orographic cyclone south of the Alps during the MAP SOP. Q J R Meteorol Soc 129(591): 17951818. doi:10.1256/qj.02.112

    Article  Google Scholar 

  • Draxler RR, Rolph GD (2003) HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY Website (http://www.arl.noaa.gov/ready/hysplit4.html). NOAA Air Resources Laboratory, Silver Spring, MD

  • Emeis S, Munkel C, Vogt S, Muller WJ, Schafer K (2004) Atmospheric boundary-layer structure from simultaneous SODAR, RASS, and ceilometer measurements. Atmos Environ 38: 273–286. doi:10.1016/j.atmosenv.2003.09.054

    Article  Google Scholar 

  • Endlich RM, Ludwig FL, Uthe EE (1979) An automatic method for determining the mixing depth from lidar observations. Atmos Environ 13: 1051–1056. doi:10.1016/0004-6981(79)90015-5

    Article  Google Scholar 

  • Eresmaa N, Karppinen A, Joffre SM, Räsänen J, Talvitie H (2006) Mixing height determination by ceilometer. Atmos Chem Phys 6: 1485–1493

    Article  Google Scholar 

  • Evans BTN (1988) Sensitivity of the backscatter/extinction ratio to changes in aerosol properties: implications for lidar. Appl Opt 27: 3299–3305. doi:10.1364/AO.27.003299

    Article  Google Scholar 

  • Fernald FG (1984) Analysis of atmospheric lidar observation: some comments. Appl Opt 23: 652–653. doi:10.1364/AO.23.000652

    Article  Google Scholar 

  • Flamant C, Pelon J, Flamant PH, Durand P (1997) Lidar determination of the entrainment zone thickness at the top of the unstable marine atmospheric boundary-layer. Boundary-Layer Meteorol 83: 247–284. doi:10.1023/A:1000258318944

    Article  Google Scholar 

  • Guibert S, Matthias V, Schulz M, Bösenberg J, Eixmann R, Mattis I, Pappalardo G, Perrone MR, Spinelli N, Vaughan G (2005) The vertical distribution of aerosol over Europe—synthesis of one year of EARLINET aerosol lidar measurements and aerosol transport modeling with LMDzT—INCA. Atmos Environ 39: 2933–2943. doi:10.1016/j.atmosenv.2004.12.046

    Article  Google Scholar 

  • Hayden KL, Anlauf KG, Hoff RM, Strapp JW, Bottenheim JW, Wiebe HA, Froude FA, Martin JB, Steyn DG, McKendry IG (1997) The vertical chemical and meteorological structure of the boundary layer in the lower Fraser Valley during Pacific ‘93. Atmos Environ 31: 2089–2105. doi:10.1016/S1352-2310(96)00300-7

    Article  Google Scholar 

  • Haywood J, Boucher O (2000) Estimates of direct and indirect radiative forcing due to tropospheric aerosol: a review. Rev Geophys 38(4): 513–543. doi:10.1029/1999RG000078

    Article  Google Scholar 

  • He QS, Li CC, Mao JT, Lau AKH, Li PR (2006) A study on the aerosol extinction-to-backscatter ratio with combination of micro-pulse LIDAR and MODIS over Hong-Kong. Atmos Chem Phys 6: 3243–3256

    Google Scholar 

  • Johansson C, Hennemuth B, Bösenberg J, Linné H, Smedman A (2005) Double-layer structure it the boundary layer over the Baltic Sea. Boundary-Layer Meteorol 114: 389–412. doi:10.1007/s10546-004-1671-5

    Article  Google Scholar 

  • Klett JD (1981) Stable analytical inversion solution for processing lidar returns. Appl Opt 20(2): 211–220. doi:10.1364/AO.20.000211

    Article  Google Scholar 

  • Kolev I, Parvanov O, Kaprielov B, Donev E, Ivanov D (1998) Lidar observations of sea-breeze aerosol structure on the Black Sea. J Appl Meteorol 37: 982–995. doi:10.1175/1520-0450(1998)037<0982:LOOSBA>2.0.CO;2

    Article  Google Scholar 

  • Kovalev VA (1993) Lidar measurement of the vertical aerosol extinction profiles with range-dependent backscatter-to-extinction ratios. Appl Opt 32(30): 6053–6065. doi:10.1364/AO.32.006053

    Article  Google Scholar 

  • Kovalev VA (1995) Sensitivity of the lidar solution to errors of the aerosol backscatter-to-extinction ratio: influence of a monotonic change in the aerosol extinction coefficient. Appl Opt 34(18): 3457–3462. doi:10.1364/AO.34.003457

    Article  Google Scholar 

  • Lemonsu A, Bastin S, Masson V, Drobinski P (2006) Vertical structure of the urban boundary layer over Marseille under sea-breeze condistions. Boundary-Layer Meteorol 118: 477–501. doi:10.1007/s10546-005-7772-y

    Article  Google Scholar 

  • Lu R, Turco RP (1994) Air pollutant transport in a coastal environment. Part I: Two dimensional simulation of sea-breeze and mountain effects. J Atmos Sci 51: 2285–2308. doi:10.1175/1520-0469(1994)051<2285:APTIAC>2.0.CO;2

    Google Scholar 

  • Maletto A, McKendry IG, Strawbridge KB (2003) Profiles of particulate matter size distribution using a ballon-borne lightweight aerosol spectrometer in the planetary boundary layer. Atmos Environ 37: 661–670. doi:10.1016/S1352-2310(02)00860-9

    Article  Google Scholar 

  • Matthias V, Freudenthaler V, Amodeo A, Balin I, Balis D, Bösenberg J et al (2004) Aerosol lidar intercomparison in the framework of the EARLINET project. 1. Instruments. Appl Opt 43(4): 961–976. doi:10.1364/AO.43.000961

    Article  Google Scholar 

  • McKendry IG, Lundgren J (2000) Tropospheric layering of ozone in regions of urbanized complex and/or coastal terrain: a review. Prog Phys Geogr 24(3): 329–354

    Google Scholar 

  • Menut L, Flamant C, Pelon J, Flamant PH (1999) Urban boundary-layer height determination from lidar measurements over the Paris area. Appl Opt 38(6): 945–954. doi:10.1364/AO.38.000945

    Article  Google Scholar 

  • Münkel C, Eresmaa N, Räsänen J, Karppinen A (2007) Retrieval of mixing height and dust concentration with lidar ceilometer. Boundary-Layer Meteorol 124: 117–128. doi:10.1007/s10546-006-9103-3

    Article  Google Scholar 

  • Papayannis A, Balis D (1998) Study of the structure of the lower troposphere over Athens using a backscattering lidar during the Medcapot–Trace experiment. Atmos Environ 32: 2161–2172. doi:10.1016/S1352-2310(97)00408-1

    Article  Google Scholar 

  • Pappalardo G, Amodeo A, Pandolfi M, Wandinger U, Ansmann A, Bösenberg J et al (2004) Aerosol lidar intercomparison in the framework of the EARLINET project. 3. Raman lidar algorithms for aerosol extinction, backscatter and lidar ratio. Appl Opt 43(28): 5370–5385. doi:10.1364/AO.43.005370

    Article  Google Scholar 

  • Pisani G (2005) Optical characterization of tropospheric aerosols in the urban area of Naples. PhD dissertation, Università “Federico II”, Napoli Italy, pp 32–64

  • Rolph GD (2003) Real-time Environmental Applications and Display sYstem (READY) Website (http://www.arl.noaa.gov/ready/hysplit4.html). NOAA Air Resources Laboratory, Silver Spring, MD

  • Santacesaria V, Marenco F, Balis D, Papayannis A, Zerefos C (1998) Lidar observations of the Planetary Boundary Layer above the city of Thessaloniki, Greece. Nuovo Cimento C 21(6): 585–595

    Google Scholar 

  • Sasano Y, Browell EV, Ismail S (1985) Error caused by using a constant extinction-to-backscatter ratio in the Lidar solution. Appl Opt 24: 3929–3932. doi:10.1364/AO.24.003929

    Article  Google Scholar 

  • Senff C, Bösenberg J, Peters G, Schaberl T (1996) Remote sensing of turbulent ozone fluxes and the ozone budget in the convective boundary layer with DIAL and radar-RASS: a case study. Contrib Atmos Phys 69: 161–176

    Google Scholar 

  • Sicard M, Pérez C, Rocadenbosch F, Baldasano JM, García-Vizcaino D (2006) Mixed layer depth determination in the Barcelona coastal area from regular lidar measurements: methods, results and limitations. Boundary-Layer Meteorol 119: 135–157. doi:10.1007/s10546-005-9005-9

    Article  Google Scholar 

  • Skakalova TS, Savov PB, Grigorov IV, Kolev IN (2003) Lidar observation of breeze structure during the transition periods at the Southern Bulgarian Black Sea coast. Atmos Environ 37: 299–311. doi:10.1016/S1352-2310(02)00919-6

    Article  Google Scholar 

  • Soriano C, Baldasano JM, Buttler WT, Moore K (2001) Circulatory patterns of air pollutants within the Barcelona Air Basin in a summertime situation: Lidar and numerical approaches. Boundary-Layer Meteorol 98: 33–55. doi:10.1023/A:1018726923826

    Article  Google Scholar 

  • Zéphoris M, Holin H, Lavie F, Cenac N, Cluzeau M, Delas O, Eideliman F, Gagneux J, Gander A, Thibord C (2005) Ceilometer observations of aerosol layer structure above the Petit Lubéron during ESCOMPTE’s IOP 2. Atmos Res 74: 581–595. doi:10.1016/j.atmosres.2004.06.014

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonella Boselli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boselli, A., Armenante, M., D’Avino, L. et al. Atmospheric Aerosol Characterization Over Naples During 2000–2003 EARLINET Project: Planetary Boundary-Layer Evolution and Layering. Boundary-Layer Meteorol 132, 151–165 (2009). https://doi.org/10.1007/s10546-009-9382-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-009-9382-6

Keywords

Navigation