Skip to main content
Log in

Double-layer structure in the boundary layer over the baltic sea

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Double-layered structures found over the Baltic Sea are investigated using radiosoundings and lidar measurements. Situations with double-layer structures are also simulated with the regional model REMO in a realistic manner. The double layer consists of two adjacent well-mixed layers, with a sharp inversion in between.

Results from radiosoundings show that the double-layer structure over the Baltic Sea mainly occurs during the autumn with thermally unstable stratification near the surface. The structure is present in about 50 % of the radiosoundings performed during autumn. The presence of the double-layer structure cannot be related to any specific wind direction, wind speed or sea surface temperature.

The lidar measurements give a more continuous picture of the time evolution of the double-layer structure, and show that the top of the lower layer is not a rigid lid for vertical transport. Two possible explanations of the double-layer structure are given, (i) the structure is caused by `advection' of land boundary-layer air over the convective marine boundary layer or, (ii) by development of Sc clouds in weak frontal zones connected to low pressure systems. Also the forming of Cu clouds is found to be important for the development of a double-layer structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • BALTEX: 1995, 'Baltic Sea Experiment BALTEX. Initial Implementation Plan', in Technical Report, International BALTEX Secretariat, GKSS Research Center, Geesthacht, Germany, 84 pp.

    Google Scholar 

  • Bergstrüm, H. and Smedman, A.: 1999, 'Wind Climatology for a Well-Exposed Site in the Baltic Sea', J. Wind Eng. 23, 133–142.

    Google Scholar 

  • Büsenberg, J.: 1998, 'Ground Based Differential Absorption Lidar for Water-Vapor and Temperature Pro ling: Methodology', Appl. Optics 37, 3845–3860.

    Google Scholar 

  • Büsenberg, J. and Linné, H.: 2002, 'Laser Remote Sensing of the Planetary Boundary Layer', Meteorol. Z. 11, 233–240.

    Google Scholar 

  • Gryning, S. and Batchvarova, E.: 2002, 'Marine Boundary Layer and Turbulent Fluxes over the Baltic Sea: Measurements and Modelling', Boundary-Layer Meteorol. 103, 29–47.

    Google Scholar 

  • Hennemuth, B. and Jacob, D.: 2002. 'One Year Measurement and Simulation of Turbulent Surface Heat Fluxes over the Baltic Sea', Meteorol. Z. 11, 105–118.

    Google Scholar 

  • Hennemuth, B., Rutgersson, A., Bumke, K., Clemens, M., Omstedt, A., Jacob, D., and Smedman, A.: 2003, 'Net Precipitation over the Baltic Sea for One Year Using Models and Data-Based Methods', Tellus 55A, 352–367.

    Google Scholar 

  • Jacob, D. and Podzun, R.: 1997, 'Sensitivity Studies with the Regional Climate Model REMO', Meteorol. Atmos. Phys. 63, 119–129.

    Google Scholar 

  • Jacob, D., den Hurk, B. V., Andræ, U., Elgered, G., Fortelius, C., Graham, L., Jackson, S., Karstens, U., Küpken, C., Lindau, R., Podzun, R., Rockel, B., Rubel, F., Sass, B., Smith, R., and Yang, X.: 2001, 'A Comprehensive Model Inter-Comparison Study Investigating the Water Budget during the BALTEX-PIDCAP Period', Meteorol. Atmos. Phys. 77, 19–43.

    Google Scholar 

  • Källstrand, B.: 1998, 'Low Level Jets in a Marine Boundary Layer During Spring', Contr. Atmos. Phys. 71, 359–373.

    Google Scholar 

  • Majewski, D.: 1991, 'The Europa-Modell of the Deutscher Wetterdienst', in Seminar Pro-ceedings ECMWF 2, pp. 147–191.

    Google Scholar 

  • Nicholls, S. and Leighton, J.: 1986, 'An observational Study of the Structure of Stratiform Cloud Sheets. Part I: Structure'. Quart. J. Roy. Meteorol. Soc. 112, 461–480.

    Google Scholar 

  • Sempreviva, A. and Gryning, S.-E.: 2000, 'Mixing Height over Water and its Role on the Correlation between Temperature and Humidity Fluctuations in the Unstable Surface Layer', Boundary-Layer Meteorol. 97, 273–291.

    Google Scholar 

  • Smedman, A., Andersson, T., Batchvorova, E., Bumke, K., Büsenberg, J., Clemens, M., Fischer, B., Grynibg, S.-E., Hennemuth, B., Hyvünen, R., Hügstrüm, U., Jacob, D., Jo-hansson, C., Kangas, M., Melas, D., Michelson, D. B., Omstedt, A., Peltomaa, A., Peters, G., Rutgersson, A., Säntti, K., and Tammelin, B.: 2000, 'PEP in Baltex-Final Report(1997–2000)Part I: Summary (EU-Project PEP in BALTEX, Contract ENV4-CT97–0484)', Available from Department of Earth Sciences, Air and Water Science, Villavägen 16, SE-752 36 Uppsala, Sweden.

  • Smedman, A., Bergstrüm, H., and Grisogono, B.: 1997, 'Evolution of Stable Internal Boundary Layers over a Cold Sea', J. Geophys. Res. 102, 1091–1099.

    Google Scholar 

  • Smedman, A., Gryning, S.-E., Büsenberg, J., Tammelin, B., Andersson, T., Omstedt, A., and Bumke, K.: 1998, 'PEP in BALTEX. A Pilot Study of Evaporation and Precipitation in the Baltic Sea', in Second Study Conference on BALTEX. Rügen, Germany, pp. 206–207.

  • Smedman, A., Hügstrüm, U., Bergstrüm, H., Rutgersson, A., Kahma, K., and Pettersson, H.: 1999, 'A Case-Study of Air-Sea Interaction during Swell Conditions', J. Geophys. Res. 104, 25, 833–825, 851.

    Google Scholar 

  • Sundararajan, R. and Tjernstrü m, M.: 2000, 'Observations and Simulations of a Non-Stationary Coastal Atmospheric Boundary Layer', Quart. J. Roy. Meteorol. Soc. 126, 445– 476.

    Google Scholar 

  • Tjernstrüm, M. and Smedman, A.: 1993, 'The Vertical Turbulence Structure of the Coastal Marine Atmospheric Boundary Layer', J. Geophys. Res. 98, 4809–4826.

    Google Scholar 

  • Turton, J. D. and Nicholls, S.: 1987, 'A Study of the Diurnal Variation of Stratocumulus Using a Multipe Mixed Layer Model', Quart. J. Roy. Meteorol. Soc. 113, 969–1009.

    Google Scholar 

  • Wulfmeyer, V., and Büsenberg, J.: 1998, 'Ground-based Differential Absorption Lidar for Water-vapour and Temperature Pro ling: Assessment of Accuracy, Resolution, and Meteorological Applications', Appl. Optics 37, 3825–3844.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johansson, C., Hennemuth, B., Bösenberg, J. et al. Double-layer structure in the boundary layer over the baltic sea. Boundary-Layer Meteorology 114, 389–412 (2005). https://doi.org/10.1007/s10546-004-1671-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-004-1671-5

Navigation