Skip to main content
Log in

A Comparison Between Modelled and Measured Mixing-Layer Height Over Munich

  • Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

An attempt is made to correlate the mixing heights, derived from ceilometer and Sodar measurements, to those simulated by different atmospheric boundary-layer parameterization schemes. The comparison is performed at two sites (one suburban and one rural) close to Munich, Germany for two spring and two winter days. It is found that, under convective conditions, the mixing height determined, by both Sodar and ceilometer, corresponds to the middle or the top of the entrainment zone, respectively, as calculated from the eddy-viscosity profiles. Under stable conditions, the measured mixing height is related to the height where eddy viscosities attain their minimum values (Sodar) or to the height of residual mechanical turbulence (ceilometer). During a foehn case with weak turbulence, the measured mixing height from both Sodar and ceilometer is better inferred by considering the eddy-viscosity profiles during daytime and the height of the low-level jet during nighttime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akylas E, Tombrou M (2005) Reconsidering and generalized interpolation between Kansas-type formulae and free convection forms. Boundary-Layer Meteorol 115: 381–398. doi:10.1007/s10546-004-1426-3

    Article  Google Scholar 

  • Akylas E, Tsakos Y, Tombrou M, Lalas DP (2003) Considerations on minimum friction velocity. Q J Roy Meteorol Soc 129: 1929–1943. doi:10.1256/qj.01.73

    Article  Google Scholar 

  • Beyrich F (1997) Mixing height estimation from sodar data—a critical discussion. Atmos Environ 31: 3941–3953. doi:10.1016/S1352-2310(97)00231-8

    Article  Google Scholar 

  • CORINE CLC (2000) European Commission CORINE land cover technical guide. ISBN 92-9167-697-7

  • Dandou A, Tombrou M, Akylas E, Soulakellis N, Bossioli E (2005) Development and evaluation of an urban parameterization scheme in the Penn State/NCAR Mesoscale Model (MM5). J Geophys Res 110: D10102. doi:10.1029/2004JD005192

    Article  Google Scholar 

  • de Haij M, Wauben W, Klein H (2006) Determination of mixing layer height from ceilometer backscatter profiles. In: Remote sensing of clouds and the atmosphere XI, proceedings of the SPIE, vol 6362. doi:10.1117/12.691050

  • Dudhia J (1989) Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J Atmos Sci 46: 3077–3107. doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2

    Article  Google Scholar 

  • Dudhia J (1996) A multi-layer soil temperature model for MM5. Preprints, the 6th PSU/NCAR mesoscale model users, workshop, Boulder, CO, July. National Centre for Atmospheric Research, pp 49–50

  • Emeis S, Schäfer K (2006) Remote sensing methods to investigate boundary layer structures relevant to air pollution in cities. Boundary-Layer Meteorol 121(2): 377–385. doi:10.1007/s10546-006-9068-2

    Article  Google Scholar 

  • Emeis S, Türk M (2004) Frequency distributions of the mixing height over an urban area from SODAR data. Meteorol Z 13: 361–367. doi:10.1127/0941-2948/2004/0013-0361

    Article  Google Scholar 

  • Emeis S, Münkel C, Vogt S, Müller WJ, Schäfer K (2004) Atmospheric boundary-layer structure from simultaneous SODAR, RASS, and ceilometer measurements. Atmos Environ 38: 273–286. doi:10.1016/j.atmosenv.2003.09.054

    Article  Google Scholar 

  • Eresmaa N, Karppinen A, Joffre SM, Räsänen J, Talvitie H (2006) Mixing height determination by ceilometer. Atmos Chem Phys 6: 1485–1493

    Article  Google Scholar 

  • Garratt JR (1992) The atmospheric boundary layer. Cambridge University Press, UK, p 316

    Google Scholar 

  • Grachev AA, Fairall CW, Bradley EF (2000) Convective profile constants revised. Boundary-Layer Meteorol 94: 495–515. doi:10.1023/A:1002452529672

    Article  Google Scholar 

  • Grell GA (1993) Prognostic evaluation of assumptions used by cumulus parameterizations. Mon Weather Rev 121: 764–787. doi:10.1175/1520-0493(1993)121<0764:PEOAUB>2.0.CO;2

    Article  Google Scholar 

  • Grell GA, Dudhia J, Stauffer D (1994) A description of the fifth-generation Penn state/NCAR mesoscale model (MM5). NCAR technical note, NCAR/TN-398 +STR. National Centre for Atmospheric Sciences, Boulder, CO, 138 pp

  • Grimmond CSB, Cleugh HA, Oke TR (1991) An objective urban heat storage model and its comparison with other schemes. Atmos Environ B 25: 311–326. doi:10.1016/0957-1272(91)90003-W

    Article  Google Scholar 

  • Hong S-Y, Pan H-L (1996) Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon Weather Rev 124: 2322–2339. doi:10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2

    Article  Google Scholar 

  • King JC, Connolley WM, Derbyshir SH (2001) Sensitivity of modeled Antarctic climate to surface and boundary-layer flux parameterizations. Q J Roy Meteorol Soc 127: 779–794. doi:10.1002/qj.49712757304

    Article  Google Scholar 

  • Münkel C, Emeis S, Müller WJ, Schäfer K (2004) Aerosol concentration measurements with a lidar ceilometer: results of a one year measuring campaign. In: Schäfer K et al (eds) Remote sensing of clouds and the atmosphere VIII, proceedings of SPIE—international society for optical engineering, vol 5235, pp 486–496

  • O’Brien JJ (1970) A note on the vertical structure of the Eddy exchange coefficient in the planetary boundary layer. J Atmos Sci 27(8): 1213–1215. doi:10.1175/1520-0469(1970)027<1213:ANOTVS>2.0.CO;2

    Article  Google Scholar 

  • Piringer M, Joffre S, Baklanov A, Christen A, Deserti M, De Ridder K, Emeis S, Mestayer P, Tombrou M, Middleton D, Baumann-Stanzer K, Dandou A, Karppinen A, Burzynski J (2007) The surface energy balance and the mixing height in urban areas—activities and recommendations of COST-Action 715. Boundary-Layer Meteorol 124: 3–24. doi:10.1007/s10546-007-9170-0

    Article  Google Scholar 

  • Pleim JE, Chang JS (1992) A non-local closure model for vertical mixing in the convective boundary layer. Atmos Environ 26: 965–981

    Google Scholar 

  • Reitebuch O, Emeis S (1998) SODAR-measurements for atmospheric research and environmental monitoring. Meteorol Z, NF 7: 11–14

    Google Scholar 

  • Seibert P, Beyrich F, Gryning S-E, Joffre S, Rasmussen A, Tercier Ph (2000) Review and inter-comparison of operational methods for the determination of the mixing height. Atmos Environ 34: 1001–1027. doi:10.1016/S1352-2310(99)00349-0

    Article  Google Scholar 

  • Schäfer K, Emeis S, Hoffmann H, Jahn C (2006) Influence of mixing layer height upon air pollution in urban and sub-urban area. Meteorol Z 15: 647–658. doi:10.1127/0941-2948/2006/0164

    Article  Google Scholar 

  • Schäfer K, Harbusch A, Emeis S, Koepke P, Wiegner M (2008) Correlation of aerosol mass near the ground with aerosol optical depth during two seasons in Munich. Atmos Environ 42(18): 4036–4046. doi:10.1016/j.atmosenv.2008.01.060

    Article  Google Scholar 

  • Seigneur C, Pun B, Pai P, Louis J-F, Solomon P, Emery C, Morris R, Zahniser M, Worsnop D, Koutrakis P, White W, Tombach I (2000) Guidance for the performance evaluation of three-dimensional air quality modeling systems for particulate matter and visibility. J Air Waste Manage Assoc 50: 588–599

    Google Scholar 

  • Shafran PC, Seaman NL, Gayno GA (2000) Evaluation of numerical predictions of boundary layer structure during the lake Michigan ozone study. J Appl Meteorol 39: 412–426. doi:10.1175/1520-0450(2000)039<0412:EONPOB>2.0.CO;2

    Article  Google Scholar 

  • Stull RB (1988) An introduction to boundary layer meteorology. Atmospheric Sciences Library, Kluwer Academic Publisher, Dordrecht, 666 pp

  • Tombrou M, Dandou A, Angelopoulos G, Helmis C, Akylas E, Flocas H, Assimakopoulos V, Soulakellis N (2007) Model evaluation of the atmospheric boundary layer and mixed-layer evolution. Boundary-Layer Meteorol 124: 61–79. doi:10.1007/s10546-006-9146-5

    Article  Google Scholar 

  • Troen I, Mahrt L (1986) A simple model for the atmospheric boundary layer: sensitivity to surface evaporation. Boundary-Layer Meteorol 37: 129–148. doi:10.1007/BF00122760

    Article  Google Scholar 

  • Weissmann M, Braun FJ, Gantner L, Mayr GJ, Rahm S, Reitebuch O (2005) The Alpine mountain–plain circulation: airborne Doppler Lidar measurements and numerical simulations. Mon Weather Rev 133: 3095–3109. doi:10.1175/MWR3012.1

    Article  Google Scholar 

  • Wiegner M, Emeis S, Freudenthaler V, Heese B, Junkermann W, Münkel C, Schäfer K, Seefeldner M, Vogt S (2006) Mixing layer height over Munich, Germany: variability and comparisons of different methodologies. J Geophys Res 111: D13201. doi:10.1029/2005JD006593

    Article  Google Scholar 

  • Xiu A, Pleim JE (2000) Development of a land surface model part I: application in a mesoscale meteorology model. J Appl Meteorol 40: 192–209. doi:10.1175/1520-0450(2001)040<0192:DOALSM>2.0.CO;2

    Article  Google Scholar 

  • Zhang D, Anthes RA (1982) A high-resolution model of the planetary boundary layer—sensitivity tests and comparisons with SESAME-79 data. J Appl Meteorol 21: 1594–1609. doi:10.1175/1520-0450(1982)021<1594:AHRMOT>2.0.CO;2

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Tombrou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dandou, A., Tombrou, M., Schäfer, K. et al. A Comparison Between Modelled and Measured Mixing-Layer Height Over Munich. Boundary-Layer Meteorol 131, 425–440 (2009). https://doi.org/10.1007/s10546-009-9373-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-009-9373-7

Keywords

Navigation