Skip to main content
Log in

Assessment of Atmospheric Boundary-Layer Processes Represented in the Numerical Model MM5 for a Clear Sky Day Using LASPEX Observations

  • Original Paper
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Data collected during the Land Surface Processes Experiment (LASPEX) in a semi-arid region of the state of Gujarat in north-west India for a clear sky day (16 May 1997) are used to assess the performance of the atmospheric boundary-layer (ABL) and land- surface parameterizations in the fifth-generation Pennsylvania State University-National Center for Atmospheric Research (PSU-NCAR) Mesoscale Model (MM5). The ABL turbulence parameterizations examined are the Blackadar scheme coupled to a simple soil slab model (SSM), and the Troen-Mahrt scheme coupled to SSM or to the more sophisticated Noah land-surface model (NSM). The comparison of several two-way nested high resolution (9-km) MM5 short term 24-h simulations indicate that, although the model is able to capture the trend in the observed data, the computed results deviate from observations. The NSM with a modest treatment of vegetation outperforms the SSM in capturing the observed daily variations in surface heat fluxes and aspects of ABL structure over the tropical land surface at local scales. Detailed analysis showed that, with the incorporation of observed local vegetation and soil characteristics, the NSM reproduced a realistic surface energy balance and near-surface temperature. It is further found that the coupling of the NSM with the Troen-Mahrt ABL scheme leads to excessive ABL mixing and a dry bias in the model simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Basu S (2001) Impact of the parameterization schemes in simulation of boundary layer structure at Anand using GCM and validation with LASPEX data. J Agrometeorol 3: 275–285

    Google Scholar 

  • Berg LK, Zhong S (2005) Sensitivity of MM5-simulated boundary layer characteristics to turbulence parameterizations. J Appl Meteorol 44: 1467–1483 doi: 10.1175/JAM2292.1

    Article  Google Scholar 

  • Betts AK, Chen F, Mitchell K, Janjic Z (1997) Assessment of land surface and boundary layer models in two operational versions of the Eta Model using FIFE data. Mon Wea Rev 125: 2896–2915 doi:10.1175/1520-0493(1997)125<2896:AOTLSA>2.0.CO;2

    Article  Google Scholar 

  • Blackadar AK (1976) Modeling the nocturnal boundary layer. In: Preprints of the 3rd symposium on atmospheric turbulence, diffusion and air quality. Raleigh, NC. Am Meteorol Soc, pp 46–49

  • Blackadar AK (1979) High resolution models of the planetary boundary layer. In: Pfafflin J, Ziegler E (eds) Advances in environmental science and engineering. Gordon and Breach, 1(1):50–85

  • Braun SA, Tao W-K (2000) Sensitivity of high-resolution simulations of Hurricane Bob (1991) to planetary boundary layer parameterizations. Mon Wea Rev 128: 3941–3961 doi:10.1175/1520-0493(2000)129<3941:SOHRSO>2.0.CO;2

    Article  Google Scholar 

  • Chen F, Dudhia J (2001) Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon Wea Rev 129: 569–585 doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2

    Google Scholar 

  • Das S, Dudhia J, Barker DM, Moncrieff M (2003) Simulation of a heavy rainfall episode over the west coast of India using analysis nudging in MM5. In: Preprints of the 13th PSU/NCAR mesoscale model users’ workshop. Boulder, Colorado, 10–11 June 2003, pp 109–112

  • Dudhia J (1989) Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J Atmos Sci 46: 3077–3107 doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2

    Article  Google Scholar 

  • Dudhia J (1993) A nonhydrostatic version of the Penn State/NCAR mesoscale model: validation tests and simulation of an Atlantic cyclone and cold front. Mon Wea Rev 121: 1493–1513 doi:10.1175/1520-0493(1993)121<1493:ANVOTP>2.0.CO;2

    Article  Google Scholar 

  • Dudhia J (1996) A multi-layer soil temperature model for MM5. In: Preprints of the 6th PSU/NCAR mesoscale model users’ workshop. Boulder, Colorado, 22–24 July, 1996, pp 49–50

  • Goswami BN, Wu G, Yasunari T (2006) The annual cycle, intraseasonal oscillations, and roadblock to seasonal predictability of the asian summer monsoon. J Clim 19: 5078–5099 doi: 10.1175/JCLI3901.1

    Article  Google Scholar 

  • Grell GA (1993) Prognostic evaluation of assumptions used by cumulus parameterizations. Mon Wea Rev 121: 764–787 doi:10.1175/1520-0493(1993)121<0764:PEOAUB>2.0.CO;2

    Article  Google Scholar 

  • Grell GA, Dudhia J, Stauffer D (1994) A description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5). In: NCAR Technical Note, NCAR/TN-398 + STR. 117 pp

  • Holtslag AAM, Boville BA (1993) Local versus nonlocal boundary-layer diffusion in a global climate model. J Clim 6: 1825–1842 doi:10.1175/1520-0442(1993)006<1825:LVNBLD>2.0.CO;2

    Article  Google Scholar 

  • Hong S-Y, Pan H-L (1996) Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon Wea Rev 124: 2322–2339 doi:10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2

    Article  Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77(3): 437–471 doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2

    Article  Google Scholar 

  • Kang IS, Lee JY, Park CK (2004) Potential predictability of summer mean precipitation in a dynamical seasonal prediction system with systematic error correction. J Clim 17: 834–844 doi:10.1175/1520-0442(2004)017<0834:PPOSMP>2.0.CO;2

    Article  Google Scholar 

  • Koster RD, Dirmeyer PA, Guo Z, Bonan G, Chan E, Cox P et al (2004) Regions of strong coupling between soil moisture and precipitation. Science 305: 1138–1140 doi: 10.1126/science.1100217

    Article  Google Scholar 

  • Mass CF, Kuo Y-H (1998) Regional real-time numerical weather prediction: current status and future potential. Bull Am Meteorol Soc 79(2): 253–263 doi:10.1175/1520-0477(1998)079<0253:RRTNWP>2.0.CO;2

    Article  Google Scholar 

  • Mellor GL, Yamada T (1974) A hierarchy of turbulence closure models for planetary boundary layers. J Atmos Sci 31: 1791–1806 doi:10.1175/1520-0469(1974)031<1791:AHOTCM>2.0.CO;2

    Article  Google Scholar 

  • Mohanty UC, Mandal M, Raman S (2004) Simulation of Orissa super cyclone (1999) using PSU/NCAR mesoscale model. Nat Hazards 31: 373–390 doi:10.1023/B:NHAZ.0000023358.38536.5d

    Article  Google Scholar 

  • Nagar SG, Tyagi A, Seetaramayya P, Singh SS (2000) Evolution of an atmospheric boundary layer at a tropical semiarid station, Anand, during boreal summer month of May—a case study. Curr Sci 78: 595–600

    Google Scholar 

  • Oncley SP, Dudhia J (1995) Evaluation of surface fluxes from MM5 using observations. Mon Wea Rev 123: 3344–3357 doi:10.1175/1520-0493(1995)123<3344:EOSFFM>2.0.CO;2

    Article  Google Scholar 

  • Pandey V, Kumar M, Shekh AM (2001) Agroclimatic features of LASPEX sites. J Agrometeorol 3: 39–55

    Google Scholar 

  • Rajagopal EN (2001) Validation of land surface parameters in NCMRWF model with LASPEX dataset. J Agrometeorol 3: 217–226

    Google Scholar 

  • Rao DVB, Prasad DH (2005) Impact of special observations on the numerical simulation of a heavy rainfall event during ARMEX-Phase I. Mausam (New Delhi) 56: 121–130

    Google Scholar 

  • Reisner J, Rasmussen RM, Bruintjes RT (1998) Explicit forecasting of supercooled liquid water in winter storm using the MM5 mesoscale model. Quart J Roy Meteorol Soc 124: 1071–1107 doi: 10.1002/qj.49712454804

    Article  Google Scholar 

  • Sanjay J, Iyer U, Singh SS (2001) Comparison of model forecasts with LASPEX-97 data. J Agrometeorol 3: 227–235

    Google Scholar 

  • Satyanarayana ANV, Lykossov VN, Mohanty UC, Machul’skaya EE (2003) Parameterization of land surface processes to study boundary layer characteristics over a semiarid region in northwest India. J Appl Meteorol 42: 528–540 doi:10.1175/1520-0450(2003)042<0528:POLSPT>2.0.CO;2

    Article  Google Scholar 

  • Trivedi DK, Sanjay J, Singh SS (2002) Numerical simulation of super cyclonic storm (1999) of Orissa—impact of initial conditions. Meteorol Appl 9: 367–376 doi: 10.1017/S1350482702003109

    Article  Google Scholar 

  • Trivedi DK, Mukhopadhyay P, Vaidya SS (2006) Impact of physical parameterization schemes on the numerical simulation of Orissa super cyclone (1999). Mausam (New Delhi) 57: 97–110

    Google Scholar 

  • Troen I, Mahrt L (1986) A simple model of the atmospheric boundary layer: sensitivity to surface evaporation. Boundary-Layer Meteorol 37: 129–148 doi: 10.1007/BF00122760

    Article  Google Scholar 

  • Vernekar KG, Sinha S, Sadani LK, Sivaramakrishnan S, Parasnis SS, Brij Mohan, Saxena S, Dharamraj T, Patil MN, Pillai JS, Murthy BS, Debaje SB, Bagavath Singh A (2003) An overview of the land surface processes experiment (LASPEX) over a semi-arid region of India. Boundary-Layer Meteorol 106: 561–572 doi: 10.1023/A:1021283503661

    Article  Google Scholar 

  • Wang W, Seaman NL (1997) A comparison study of convective parameterization schemes in a mesoscale model. Mon Wea Rev 125: 252–278 doi:10.1175/1520-0493(1997)125<0252:ACSOCP>2.0.CO;2

    Article  Google Scholar 

  • Zhang D-L, Anthes RA (1982) A high-resolution model of the planetary boundary layer—Sensitivity tests and comparisons with SESAME-79 data. J Appl Meteorol 21: 1594–1609 doi:10.1175/1520-0450(1982)021<1594:AHRMOT>2.0.CO;2

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Sanjay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanjay, J. Assessment of Atmospheric Boundary-Layer Processes Represented in the Numerical Model MM5 for a Clear Sky Day Using LASPEX Observations. Boundary-Layer Meteorol 129, 159–177 (2008). https://doi.org/10.1007/s10546-008-9298-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-008-9298-6

Keywords

Navigation