Skip to main content
Log in

Large-Eddy Simulation of the Stable Atmospheric Boundary Layer using Dynamic Models with Different Averaging Schemes

  • Original Paper
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Large-eddy simulation (LES) of a stable atmospheric boundary layer is performed using recently developed dynamic subgrid-scale (SGS) models. These models not only calculate the Smagorinsky coefficient and SGS Prandtl number dynamically based on the smallest resolved motions in the flow, they also allow for scale dependence of those coefficients. This dynamic calculation requires statistical averaging for numerical stability. Here, we evaluate three commonly used averaging schemes in stable atmospheric boundary-layer simulations: averaging over horizontal planes, over adjacent grid points, and following fluid particle trajectories. Particular attention is focused on assessing the effect of the different averaging methods on resolved flow statistics and SGS model coefficients. Our results indicate that averaging schemes that allow the coefficients to fluctuate locally give results that are in better agreement with boundary-layer similarity theory and previous LES studies. Even among models that are local, the averaging method is found to affect model coefficient probability density function distributions and turbulent spectra of the resolved velocity and temperature fields. Overall, averaging along fluid pathlines is found to produce the best combination of self consistent model coefficients, first- and second-order flow statistics and insensitivity to grid resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albertson JD and Parlange MB (1999a). Natural integration of scalar fluxes from complex terrain. Adv Water Res 23: 239–252

    Article  Google Scholar 

  • Albertson JD and Parlange MB (1999b). Surface length scales and shear stress: implications for land–atmosphere interactions over complex terrain. Water Resources Res 35: 2121–2132

    Article  Google Scholar 

  • Anderson R and Meneveau C (1999). Effects of similarity model in finite-difference les of isotropic turbulence using a Lagrangian dynamic mixed model. Flow, Turbul Combust 62: 201–225

    Article  Google Scholar 

  • Andrén A (1995). The structure of stably stratified atmospheric boundary layers: a large-eddy simulation study. Quart J Roy. Meteorol Soc 121: 961–985

    Article  Google Scholar 

  • Armenio V and Piomelli U (2000). Applications of a Lagrangian mixed model in generalized coordinates. Flow, Turbul Combust 65: 51–81

    Article  Google Scholar 

  • Basu S and Porté-Agel F (2006). Large-eddy simulation of stably stratified atmospheric boundary layer turbulence: a scale-dependent dynamic modeling approach. J Atmos Sci 63: 2074–2091

    Article  Google Scholar 

  • Beare RJ and MacVean MK (2004). Resolution sensitivity and scaling of large-eddy simulations of the stable boundary layer. Boundary-Layer Meteorol 112: 257–281

    Article  Google Scholar 

  • Beare RJ, MacVean MK, Holtslag AAM, Cuxart J, Esau I, Golaz J-C, Jimenez MA, Khairoutdinov M, Kosovic B, Lewellen D, Lund TS, Lundquist JK, McCabe A, Moene AF, Noh Y, Raasch S and Sullivan P (2006). An intercomparison of large-eddy simulations of the stable boundary layer. Boundary-Layer Meteorol 118: 247–272

    Article  Google Scholar 

  • Beljaars ACM and Holtslag AAM (1991). Flux parameterization over land surfaces for atmospheric models. J Appl Meteorol 30: 327–341

    Article  Google Scholar 

  • Bou-Zeid E, Meneveau C and Parlange MB (2004). Large-eddy simulation of neutral atmospheric boundary layer flow over heterogeneous surfaces: blending height and effective surface roughness. Water Resour Res 40: 1–18

    Article  Google Scholar 

  • Bou-Zeid E, Meneveau C and Parlange MB (2005). A scale-dependent lagrangian dynamic model for large eddy simulation of complex turbulent flows. Phys. Fluids 17: 025105

    Article  Google Scholar 

  • Brown AR, Derbyshire SH and Mason PJ (1994). Large-eddy simulation of stable atmospheric boundary layers with a revised stochastic subgrid model. Quart J Roy Meteorol Soc 120: 1485–1512

    Article  Google Scholar 

  • Brutsaert WH (1998). Land-surface water vapor and sensible heat flux: spatial variability, homogeneity and measurement scales. Water Resour Res 34: 2433–2442

    Article  Google Scholar 

  • Businger JA, Wyngaard JC, Izumi Y and Bradley EF (1971). Flux-profile relationships in the atmospheric surface layer. J Atmos Sci 28: 181–189

    Article  Google Scholar 

  • Caughey SJ (1977). Boundary-layer turbulence spectra in stable conditions. Boundary-Layer Meteorol 11: 3–14

    Article  Google Scholar 

  • Cederwall RT (2002) Large-eddy simulation of the evolving stable boundary layer over flat terrain. Ph.D. thesis, Stanford University, Stanford, California

  • Corrsin S (1951). On the Spectrum of isotropic temperature fluctuations in an isotropic turbulence. J Appl Phys 22(4): 189–196

    Article  Google Scholar 

  • Cuxart J, Holtslag AAM, Beare RJ, Bazile E, Beljaars A, Cheng A, Conangla L, Ek M, Freedman F, Hamdi R, Kerstein A, Kitagawa H, Lenderink G, Lewellen D, Mailhot J, Mauritsen T, Perov V, Schayes G, Steeneveld G-J, Svensson G, Taylor P, Weng W, Wunsch S and Xu K-M (2006). Single-column model intercomparison for a stably stratified atmospheric boundary layer. Boundary-Layer Meteorol 118: 273–303

    Article  Google Scholar 

  • Esau I (2004). Simulation of Ekman boundary layers by large-eddy model with dynamic mixed subfilter closure. Environ Fluid Mech 4: 273–303

    Article  Google Scholar 

  • Germano M (1992). Turbulence: the filtering approach. J Fluid Mech 238: 325–336

    Article  Google Scholar 

  • Germano M, Piomelli U, Parviz M and Cabot WH (1991). A dynamic subgrid-scale eddy viscosity model. Phys Fluids A 3(7): 1760–1765

    Article  Google Scholar 

  • Geurts B (2004). Elements of direct and large-eddy simulations. R. T. Edwards, Philadelphia

    Google Scholar 

  • Ghosal S, Lund TS, Moin P and Akselvoll K (1995). A dynamic localization model for large-eddy simulation of turbulent flows. J Fluid Mech 286: 229–255

    Article  Google Scholar 

  • Holtslag B (2006) GEWEX atmospheric boundary-layer study (GABLS) on stable boundary layers. Boundary-Layer Meteorol

  • Jimenez MA and Cuxart J (2005). Large-eddy simulations of the stable boundary layer using the standard kolmogorov theory: range of applicability. Boundary-Layer Meteorol 115: 241–261

    Article  Google Scholar 

  • Kaimal JC (1973). Turbulence, spectra, length scales and structure parameters in the stable surface layer. Boundary-Layer Meteorol 4: 289–309

    Article  Google Scholar 

  • Kaimal JC, Wyngaard JC, Izumi Y and Coté OR (1972). Spectral characteristics of surface-layer turbulence. Quart J Roy Meteorol Soc 98: 563–589

    Article  Google Scholar 

  • King JC, Connolley WM and Derbyshire SH (2001). Sensitivity of modelled antarctic climate to surface and boundary-layer flux parametrizations. Quart J Roy Meteorol Soc 127: 779–794

    Article  Google Scholar 

  • Kirkpatrick MP, Ackerman AS, Stevens DE and Mansour NN (2006). On the application of the dynamic Smagorinsky model to large-eddy simulations of cloud-topped atmospheric boundary layer. J Atmos Sci 63: 526–546

    Article  Google Scholar 

  • Kleissl J, Meneveau C and Parlange MB (2003). On the magnitude and variability of subgrid-scale eddy-diffusion coefficients in the atmospheric surface layer. J Atmos Sci 60: 2372–2388

    Article  Google Scholar 

  • Kleissl J, Parlange MB and Meneveau C (2004). Field experimental study of dynamic Smagorinsky models in the atmospheric surface layer. J Atmos Sci 61: 2296–2307

    Article  Google Scholar 

  • Kleissl J, Vijayant K, Meneveau C and Parlange MB (2006). Numerical study of dynamic Smagorinsky models in large-eddy simulation of the atmospheric boundary layer: validation in stable and unstable conditions. Water Resour Res 42: W06D10

    Article  Google Scholar 

  • Kolmogorov AN (1941) The local structure of turbulence in incompressible viscous fluid for very large Reynold number. Dokl Akad Nauk SSSR 30:299–303. (English translation, Proc Roy Soc Lond Ser A 434:9–13, 1991.)

  • Kosovic B and Curry JA (2000). A large-eddy simulation study of a quasi-steady, stably stratified atmospheric boundary layer. J Atmos Sci 57: 1052–1068

    Article  Google Scholar 

  • Lilly DK (1967) The representation of small-scale turbulence in numerical simulation experiments. In: Proceedings of IBM scientific computing symposium on environmental sciences. White Plains, NY, p 195, IBM Data Process. Div

  • Lilly DK (1992). A proposed modification of the Germano subgrid-scale closure method. Phys. Fluids A 4(3): 633–635

    Article  Google Scholar 

  • Mason PJ (1994). Large-eddy simulation: a critical review of the technique. Quart J Roy Meteorol Soc 120: 1–26

    Article  Google Scholar 

  • Mason PJ and Brown AR (1999). On subgrid models and filter operations in large-eddy simulations. J Atmos Sci 56: 2101–2114

    Article  Google Scholar 

  • Mason PJ and Callen NS (1986). On the magnitude of the subgrid-scale eddy coefficient in large-eddy simulations of turbulent channel flow. J Fluid Mech 162: 439–462

    Article  Google Scholar 

  • Mason PJ and Derbyshire SH (1990). Large-eddy simulation of the stably-stratified atmospheric boundary layer. Boundary-Layer Meteorol 53: 117–162

    Article  Google Scholar 

  • Meneveau C and Katz J (2000). Scale-invariance and turbulence models for large-eddy simulation. Ann Rev Fluid Mech 32: 1–32

    Article  Google Scholar 

  • Meneveau C and Lund TS (1997). The dynamic Smagorinsky model and scale-dependent coefficients in the viscous range of turbulence. Phys Fluids 9(12): 3932–3934

    Article  Google Scholar 

  • Meneveau C, Lund TS and Cabot WH (1996). A Lagrangian dynamic subgrid-scale model of turbulence. J Fluid Mech 319: 353–385

    Article  Google Scholar 

  • Moeng C-H (1984). A large-eddy simulation model for the study of planetary boundary-layer turbulence. J Atmos Sci 41: 2052–2062

    Article  Google Scholar 

  • Moin P, Squires W, Cabot W and Lee S (1991). A dynamic subgrid-scale model for compressible turbulence and scalar transport. Phys Fluids A 3(11): 2746–2756

    Article  Google Scholar 

  • Moraes OLL (1988). The velocity spectra in the stable atmospheric boundary layer. Boundary-Layer Meteorol 43: 223–230

    Article  Google Scholar 

  • Nieuwstadt FTM (1984). The turbulent structure of the stable, nocturnal boundary layer. J Atmos Sci 41(14): 2202–2216

    Article  Google Scholar 

  • Nieuwstadt FTM (1985) A model for the stationary, stable boundary layer. In: Hunt JCR (ed) In: Proceedings of IMA conference turbulence and diffusion in stable environments. Cambridge, pp 149–179

  • Perry AE, Henbest SM and Chong MS (1986). A theoretical and experimental study of wall turbulence. J Fluid Mech 165: 163–199

    Article  Google Scholar 

  • Piomelli U (1993). High Reynolds number calculations using the dynamic subgrid-scale stress model. Phys Fluids A 5: 1484–1490

    Article  Google Scholar 

  • Pope S (2000). Turbulent flows. Cambridge University Press, UK, 806 pp

    Google Scholar 

  • Pope S (2004). Ten questions concerning the large-eddy simulation of turbulent flows. New J Phys 6: 35

    Article  Google Scholar 

  • Porté-Agel F (2004). A scale-dependent dynamic model for scalar transport in large-eddy simulations of the atmospheric boundary layer. Boundary-Layer Meteorol 112: 81–105

    Article  Google Scholar 

  • Porté-Agel F, Meneveau C and Parlange MB (2000). A scale-dependent dynamic model for large-eddy simulations: application to a neutral atmospheric boundary layer. J Fluid Mech 415: 261–284

    Article  Google Scholar 

  • Porté-Agel F, Pahlow M, Meneveau C and Parlange MB (2001a). Atmospheric stability effect on subgrid-scale physics for large-eddy simulation. Adv Water Res 24: 1085–1102

    Article  Google Scholar 

  • Porté-Agel F, Parlange MB, Meneveau C and Eichinger WE (2001b). A priori field study of the subgrid-scale heat fluxes and dissipation in the atmospheric surface layer. J Atmos Sci 58: 2673–2698

    Article  Google Scholar 

  • Sagaut P (2002). Large eddy simulation for incompressible flows: an introduction. Springer-Verlag, Berlin Heidelberg

    Google Scholar 

  • Saiki EM, Moeng C-H and Sullivan PP (2000). Large-eddy simulation of the stably stratified planetery boundary layer. Boundary-Layer Meteorol 95: 1–30

    Article  Google Scholar 

  • Sarghini F, Piomelli U and Balaras E (1999). Scale-similar models for large-eddy simulations. Phys Fluids 11(6): 1596–1607

    Article  Google Scholar 

  • Smagorinsky J (1963). General circulation experiments with the primitive equations, Part 1: the basic experiment. Mon Wea Rev 91: 99–164

    Article  Google Scholar 

  • Sorbjan Z (1986). Local similarity of spectral and cospectral characteristics in the stable-continuous boundary layer. Boundary-Layer Meteorol 35: 257–275

    Article  Google Scholar 

  • Stoll R and Porté-Agel F (2006a). Dynamic subgrid-scale models for momentum and scalar fluxes in large-eddy simulations of neutrally stratified atmospheric boundary layers over heterogeneous terrain. Water Resour Res 42: W01409

    Article  Google Scholar 

  • Stoll R and Porté-Agel F (2006b). Effect of roughness on surface boundary conditions for large-eddy simulation. Boundary-Layer Meteorol 118: 169–187

    Article  Google Scholar 

  • Sullivan PP, Horst TW, Lenschow DH, Moeng CH and Weil JC (2003). Structure of subfilter-scale fluxes in the atmospheric surface layer with application to large eddy simulation modeling. J Fluid Mech 482: 101–139

    Article  Google Scholar 

  • Zang Y, Street RL and Koseff JR (1993). A dynamic mixed subgrid-scale model and its application to turbulent recirculating flows. Phys Fluids A 5: 3186–3196

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Porté-Agel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stoll, R., Porté-Agel, F. Large-Eddy Simulation of the Stable Atmospheric Boundary Layer using Dynamic Models with Different Averaging Schemes. Boundary-Layer Meteorol 126, 1–28 (2008). https://doi.org/10.1007/s10546-007-9207-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-007-9207-4

Keywords

Navigation