Skip to main content
Log in

Characteristics of secondary circulations over an inhomogeneous surface simulated with large-eddy simulation

  • Original Paper
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Large-eddy simulation is used to study secondary circulations in the convective boundary layer modulated as a result of horizontally varying surface properties and surface heat fluxes over flat terrain. The presence of heat flux heterogeneity and its alignment with respect to geostrophic wind influences the formation, strength and orientation of organized thermals. Results show boundary-attached roll formation along heat flux maxima in the streamwise direction. The streamwise organization of the updrafts and downdrafts formed downwind of heterogeneities leads to counter-rotating secondary circulations in the crosswind plane. The distribution of resolved-scale pressure deviations shows large pressure gradients in the crosswind plane. Spanwise and vertical velocity variances and heat flux profiles depict considerable spatial variability compared to a homogeneous forest simulation. Secondary circulations are observed for various ambient wind scenarios parallel and perpendicular to heterogeneities. In the presence of increased wind speed, thermals emerging from the heat flux heterogeneity are elongated, and organize along and downwind of large-scale heterogeneity in the streamwise direction. Simulation with a reduced heat flux shows a shallower circulation with a lower aspect ratio. Point measurements of heat flux inside the roll circulation could be overestimated by up to 15–25% compared to a homogeneous case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agee E, Gluhovsky A (1999) LES model sensitivities to domain, grids, large-eddy timescales. J Atmos Sci 56:599–604

    Article  Google Scholar 

  • Albertson JD, Kustas WP, Scanlon TM (2001) Large-eddy simulation over heterogeneous terrain with remotely sensed land surface conditions. Water Resour Res 37(7):1939–1953

    Article  Google Scholar 

  • André J-C, Bougeault P, Goutorbe JP (1990) Regional estimates of heat and evaporation fluxes over nonhomogeneous terrain examples from the HAPexMOBILHY programme. Boundary-Layer Meteorol 50:77–108

    Article  Google Scholar 

  • Avissar R, Pielke RA (1989) A parameterization of heterogeneous land surfaces for atmospheric numerical models and its impact on regional meteorology. Mon Wea Rev 117:2113–2136

    Article  Google Scholar 

  • Avissar R, Eloranta EW, Gürer K, Tripoli GJ (1998) An evaluation of the large-eddy simulation option of the regional atmospheric modeling system in simulating a convective boundary layer: a FIFE case study. J Atmos Sci 55:1109–1130

    Article  Google Scholar 

  • Avissar R, Schmidt T (1998) An evaluation of the scale at which ground-surface heat flux patchiness affects the convective boundary layer using large-eddy simulation. J Atmos Sci 55:2666–2689

    Article  Google Scholar 

  • Businger JA, Wyngaard JC, Izumi Y, Bradley EF (1971) Flux–profile relationships in the atmospheric surface layer. J Atmos Sci 28:181–189

    Article  Google Scholar 

  • Cai X-M, Nasrullah M, Huang Y (2004) Fumigation of pollutants into a growing convective boundary layer over an inhomogeneous surface: large-eddy simulation. Atmos Environ 38:3605–3616

    Article  Google Scholar 

  • Deardorff JW (1972) Numerical investigation of neutral and unstable planetary boundary layers. J Atmos Sci 29:91–115

    Article  Google Scholar 

  • Desjardins RL, MacPherson JI, Mahrt L, Schuepp P, Pattey E, Neumann H, Baldocchi D, Wofsy S, Fitzjarrald D, McCaughey H, Joiner DW (1997) Scaling up flux measurements for the boreal forest using aircraft-tower combinations. J Geophys Res 102(D24):29,125–29,133

    Google Scholar 

  • Doran JC, Barnes FJ, Coulter RL, Crawford TL, Baldocchi DD, Balick L, Cook DR, Cooper D, Dobosy RJ, Dugas WA, Fritschen L, Hart RL, Hipps L, Hubbe JM, Gao W, Hicks R, Kirkham RR, Kunkel KE, Martin TJ, Meyers TP, Porch W, Shannon JD, Shaw WJ, Swiataek E, Whiteman CD (1992) The boardman regional flux experiment. Bull Amer Meteorol Soc 73:1785–1795

    Article  Google Scholar 

  • Doran JC, Shaw WJ, Hubbe JM (1995) Boundary layer characteristics over areas of inhomogeneous surface fluxes. J Appl Meteorol 34:559–571

    Article  Google Scholar 

  • Dörnbrack A, Schumann U (1993) Numerical simulation of turbulent convective flow over wavy terrain. Boundary-Layer Meteorol 65:323–355

    Google Scholar 

  • Esau IN, Lyons TJ (2002) Effect of sharp vegetation boundary on the convective atmospheric boundary layer. Agric For Meteorol 114:3–13

    Article  Google Scholar 

  • Finnigan JJ, Clement R, Malhi Y, Leuning R, Cleugh H (2003) A re-evaluation of long-term flux measurement techniques. Part I: averaging and coordinate rotation. Boundary-Layer Meteorol 107:1–48

    Article  Google Scholar 

  • Gopalakrishnan SG, Avissar R (2000) An LES study of the impacts of land surface heterogeneity on dispersion in the convective boundary layer. J Atmos Sci 57:352–371

    Article  Google Scholar 

  • Gopalakrishnan SG, Roy BS, Avissar R (2000) An evaluation of the scale at which topographical features affect the convective boundary layer using large-eddy simulations. J Atmos Sci 57:334–351

    Article  Google Scholar 

  • Guo Ya, Schuepp PH (1994) An analysis of the effect of local heat advection on evaporation over wet and dry Strips. J Climate 7:641–652

    Article  Google Scholar 

  • Hadfield MG, Cotton WR, Pielke RA (1991a) Large-eddy simulations of thermally forced circulations in the convective boundary layer. Part I: a small-scale circulation with zero wind. Boundary-Layer Meteorol 57:79–114

    Article  Google Scholar 

  • Hadfield MG, Cotton WR, Pielke RA (1991b) Large-eddy simulations of thermally forced circulations in the convective boundary layer. Part II: the effect of change in wavelength and wind speed. Boundary-Layer Meteorol 58:307–327

    Article  Google Scholar 

  • Hechtel LM, Moeng CH, Stull RB (1990) The effects of nonhomogeneous surface fluxes on the convective boundary layer: a case study using large-eddy simulation. J Atmos Sci 47:1721–1741

    Article  Google Scholar 

  • Khanna S, Brasseur JG (1998) Three-dimensional buoyancy- and shear-induced local structure of the atmospheric boundary layer. J Atmos Sci 55:710–743

    Article  Google Scholar 

  • Klaassen W, van Breugel PB, Moors EJ, Nieveen JP (2002) Increased heat fluxes near a forest edge. Theor Appl Climatol 72:3–4, 231–243

    Google Scholar 

  • Kropfli RA, Kohn NM (1978) Persistent horizontal rolls in the urban mixed layer as revealed by dual Doppler radar. J Appl Meteorol 17:669–676

    Article  Google Scholar 

  • Kustas WP, Albertson JD (2003) Effects of surface temperature contrast on land atmosphere exchange: a case study from Monsoon 90. Water Resour Res 39(6):1159–1174

    Article  Google Scholar 

  • LeMone MA (1973) The structure and dynamics of horizontal roll vortices in the planetary boundary layer. J Atmos Sci 30:1077

    Article  Google Scholar 

  • Liang S (2000) Narrowband to broadband conversions of land surface albedo I algorithms. Remote Sensing Environ 76:213–238

    Article  Google Scholar 

  • Lin C-L (2000) Local pressure-transport structure in a convective atmospheric boundary layer. Phys Fluids 12(5):1112–1128

    Article  Google Scholar 

  • Leclerc MY, Karipot A, Prabha T, Allwine G, Lamb B, Gholz HL (2003) Impact of non-local advection on flux footprints over a tall forest canopy: a tracer flux experiment. Agric For Meteorol 115:17–34

    Google Scholar 

  • Lee X (1998) On micrometeorological observations of surface-air exchange over tall vegetation. Agric For Meteorol 91:39–49

    Article  Google Scholar 

  • Letzel MO, Raasch S (2003) Large-eddy simulation of thermally induced oscillations in the convective boundary layer. J Atmos Sci 60(18):2328–2341

    Article  Google Scholar 

  • Malhi Y, Pegoraro E, Nobre AD, Pereira MGP, Grace J, Culf AD, Clement R (2002) Energy and water dynamics of a central Amazonian. J Geophys Res 107(D20):8061

    Article  Google Scholar 

  • Mahrt L (1998) Flux sampling errors for aircraft and towers. J Atmos Oceanic Tech 15:416–429

    Article  Google Scholar 

  • Moeng C-H (1984) A large-eddy simulation for the study of planetary boundary layer turbulence. J Atmos Sci 41:2052–2062

    Article  Google Scholar 

  • Moeng C-H, Sullivan PP (1994) A comparison of shear- and buoyancy-driven planetary boundary layer flows. J Atmos Sci 51:999–1022

    Article  Google Scholar 

  • Moeng C-H, Wyngaard JC (1984) Statistics of conservative scalars in the convective boundary layer. J Atmos Sci 41:3161–3169

    Article  Google Scholar 

  • Newsom RK, David L, Ron R, Rob H, Edward C, Marko P (2005) Retrieval of microscale wind and temperature fields from single- and dual-Doppler lidar data. J Appl Meteorol 44(9):1324–1345

    Article  Google Scholar 

  • Norman JM, Kustas WP, Humes KS (1995) A two-source approach for estimating soil and vegetation energy fluxes from observations of directional radiometric surface temperature. Agric For Meteorol 77:263–293

    Article  Google Scholar 

  • Patton EG, Sullivan PP, Davis KJ (2003) The influence of a forest canopy on top–down and bottom–up diffusion in the planetary boundary layer. Quart J Roy Meteorol Soc 129:1415–1434

    Article  Google Scholar 

  • Patton EG, Sullivan pp, Moeng C-H (2005) The influence of idealized heterogeneity on wet and dry planetary boundary layers coupled to the land surface. J Atmos Sci 62:2078–2097

    Article  Google Scholar 

  • Pielke RA (1974) A three-dimensional numerical model of the sea breezes over South Florida. Mon Wea Rev 102:115–139

    Article  Google Scholar 

  • Raasch S, Harbusch G (2001) An analysis of secondary circulations and their effects caused by small-scale surface inhomogeneities using large-eddy simulations. Boundary-Layer Meteorol 101: 31–59

    Article  Google Scholar 

  • Sakai RK, Fitzjarrald DR, Moore KE (2001) Importance of low-frequency contributions to eddy fluxes observed over rough surfaces. J Appl Meteorol 40:2178–2192

    Article  Google Scholar 

  • Schumann U (1975) Subgrid scale model for finite difference simulations of turbulent flows in plane channels. Annuli J Comput Phys 18:376–404

    Article  Google Scholar 

  • Schumann U (1991) A simple model of the convective boundary layer over wavy terrain with variable heat flux. Beitr Phys Atmos 64:169–184

    Google Scholar 

  • Shen SH, Leclerc MY (1994) Large-eddy simulation of small-scale surface effects on the convective boundary layer structure. Atmosphere-Ocean 32:717–731

    Google Scholar 

  • Shen SH, Leclerc MY (1995) How large must surface inhomogeneities be before they influence the convective boundary layer structure—a case study. Quart J Roy Meteorol Soc 121:1209–1228

    Article  Google Scholar 

  • Shen Y, Tong P, Xia K-Q (1996) Turbulent convection over rough surfaces. Phys Rev Lett 76:908

    Article  Google Scholar 

  • Silva Dias MAF, Silva Dias PL, Longo M, Fitzjarrald DR, Denning AS (2004) River breeze circulation in eastern Amazonia: observations and modeling results. Theor Appl Climatol 78:111–121

    Article  Google Scholar 

  • Stull RB (1988) An introduction to boundary layer meteorology. Kluwer Academic Publishers, Dordrecht, 666 pp

    Google Scholar 

  • Sullivan PP, McWilliams JC, Moeng C-H (1994) A subgrid-scale model for large-eddy simulation of planetary boundary-layer flows. Boundary-Layer Meteorol 71:247

    Article  Google Scholar 

  • Sun J, Lenschow DII, Mahrt L, Crawford TL, Davis KJ, Oncley SP, Macpherson JI, Wang Q, Dobosy RJ, Desjardins RL (1997) Lake-induced atmospheric circulations during BOREAS. J Geophys Res 102(D24):29, 155–129, 166

    Google Scholar 

  • Sun J, Desjardins R, Mahrt L, MacPherson I (1998) Transport of carbon dioxide, water vapor, and ozone turbulence and local circulations. J Geophys Res 103(D20):25, 873–25, 855

    Google Scholar 

  • Sykes RI, Henn DS (1989) Large-eddy simulation of turbulent sheared convection. J Atmos Sci 46:1106–1118

    Article  Google Scholar 

  • Twine TE, Kustas WP, Norman JM, Cook DR, Houser PR, Meyers TP, Prueger JH, Starks PJ, Wesley ML (2000) Correcting eddy-covariance flux underestimates over a grassland. Agric For Meteorol 103:279–300

    Article  Google Scholar 

  • Willis GE, Deardorff JW (1974) A laboratory model of the unstable planetary boundary layer. J Atmos Sci 31:1297–1307

    Article  Google Scholar 

  • Wilson K, Goldstein A, Falge E, Aubinet M, Baldocchi D, Berbigier P, Bernhofer C, Ceulemans R, Dolman H, Field C, Grelle A, Ibrom A, Law BE, Kowalski A, Meyers T, Moncrieff J, Monson R, Oechel W, Tenhunen J, Valentini R, Verma S (2002) Energy balance closure at FLUXNET sites. Agric For Meteorol 113(1–4):223–243

    Article  Google Scholar 

  • Yi C, Davis KJ, Bakwin PS, Berger BW, Marr LC (2000) Influence of advection on measurements of the net ecosystem–atmosphere exchange of CO2 from a very tall tower. J Geophys Res 105(D8):9991–9999

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thara V. Prabha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prabha, T.V., Karipot, A. & Binford, M.W. Characteristics of secondary circulations over an inhomogeneous surface simulated with large-eddy simulation. Boundary-Layer Meteorol 123, 239–261 (2007). https://doi.org/10.1007/s10546-006-9137-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-006-9137-6

Keywords

Navigation