Skip to main content
Log in

Implementation of a Stable PBL Turbulence Parameterization for the Mesoscale Model MM5: Nocturnal Flow in Complex Terrain

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The difficulties associated with the parameterization of turbulence in the stable nocturnal planetary boundary layer (PBL) have been a great challenge for the nighttime predictions from mesoscale meteorological models such as MM5. As such, there is a general consensus on the need for better stable boundary-layer parameterizations. To this end, two new turbulence parameterizations based on the measurements of the Vertical Transport and Mixing (VTMX) field campaign were implemented and evaluated in MM5. A unique aspect of this parameterization is the use of a stability-dependent turbulent Prandtl number that allows momentum to be transported by the internal waves, while heat diffusion is impeded by the stratification. This improvement alleviates the problem of over-prediction of heat diffusion under stable conditions, which is a characteristic of conventional atmospheric boundary-layer schemes, such as the Medium Range Forecast (MRF) and Blackadar schemes employed in MM5. The predictions made with the new PBL scheme for the complex terrain airshed of Salt Lake City were compared with those made with a default scheme of MM5, and with observations made during the VTMX campaign. The new schemes showed an improvement in predictions, particularly for the nocturnal near-surface temperature. Surface wind predictions also improved slightly, but not to the extent of temperature predictions. The default MRF scheme showed a significantly higher surface temperature than observed, which could be attributed to the enhanced vertical heat exchange brought about by its turbulence parameterization. The modified parameterizations reduced the surface sensible heat flux, thus enhancing the strength of the near-surface inversion and lowering the temperature towards the observed values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • 1. Ballard S.P., Golding B.W., and Smith R.N.B., (1991), ‘Mesoscale Model Experimental Forecasts of the Haar of Northeast Scotland’. Mon. Wea. Rev. 119, 2107–2123

    Article  Google Scholar 

  • 2. Benoit R., Cote J., and Mailhot J., (1989), ‘Inclusion of a TKE Boundary Layer Parameterization in the Canadian Regional Finite-Element Model’. Mon. Wea. Rev. 117, 1726–1750

    Article  Google Scholar 

  • 3. Berkowicz R., Prahm L.P., (1979), ‘Generalization of K-theory for Turbulent Diffusion. Part I. Spectral Diffusivity Concept’. J. Appl. Meteorol. 18, 266–272

    Article  Google Scholar 

  • 4. Berkowicz R., Prahm L.P., (1980), ‘On the Spectral Turbulent Diffusivity Theory for Homogeneous Turbulence’. J. Fluid Mech. 100, 433–448

    Article  Google Scholar 

  • Blackadar A.K., (1979), ‘High Resolution Models of the Planetary Boundary Layer’. in J. Pfafflin and E. Ziegler (eds.), Advances in Environmental Science and Engineering, Vol. 1, Gordon and Breach, pp. 50–85.

  • Bluemen W. (ed): 1990, ‘Atmospheric Processes Over Complex Terrain’. Meteorol. Monogr., Vol 23, No. 45, Amer. Meteorol. Soc., 323 pp.

  • 7. Bright D.R., Mullen S.J., (2002), ‘The Sensitivity of the Numerical Simulation of the Southwest Monsoon Boundary Layer to the Choice of PBL Turbulence Parameterization in MM5’. Wea. Forecast. 17, 99–114

    Article  Google Scholar 

  • 8. Brown A.R., Derbyshire, S H., and Mason P.J., (1994), ‘Large Eddy Simulation of Stable Atmospheric Boundary Layers with a Revised Stochastic Subgrid Model’. Quart. J. Roy. Meteorol. Soc. 120, 1485–1512

    Article  Google Scholar 

  • 9. Chen F., Dudhia J., (2001), ‘Coupling an Advanced Land-Surface/Hydrology Model with the Penn State/NCAR MM5 Modeling System. Part I: Model Implementation and Sensitivity’. Mon. Wea. Rev. 129, 569–585

    Article  Google Scholar 

  • 10. Corrsin S., (1974), ‘Limitations of Gradient Transport Models in Random Walks and in Turbulence’. Adv. Geophys. 18A, 25–60

    Article  Google Scholar 

  • 11. Derbyshire S.H., (1999), ‘Stable Boundary-Layer Modeling: Established Approaches and Beyond’. Boundary-Layer Meteorol. 90, 423–446

    Article  Google Scholar 

  • 12. Doran J.C., Fast J.D., and Horel J., (2002), ‘The VTMX 2000 Campaign’. Bull. Amer. Meteorol. Soc. 83, 537–551

    Article  Google Scholar 

  • 13. Estoque M.A., (1968), ‘Vertical Mixing due to Penetrative Convection’. J. Atmos. Sci. 25, 1046–1051

    Article  Google Scholar 

  • Fernando H.J.S., (2002), ‘Turbulence in Stratified Flows’. in R. Grimshaw (ed.), Environmental Stratified Flows, Kluwer Publishing, pp. 163–192.

  • 15. Fernando H.J.S., (2003), ‘Turbulence Patches in a Stratified Shear Flow’. Phys. Fluids. 15(10): 3164–3169

    Article  Google Scholar 

  • 16. Fiedler B.H., (1984), ‘An Integral Closure Model for the Vertical Turbulent Flux of a Scalar in a Mixed Layer’. J. Atmos. Sci. 41, 674–680

    Article  Google Scholar 

  • 17. Gargett A.E., Holloway G., (1992), ‘Sensitivity of the GFDL Ocean Model to Different Diffusivities for Heat and Salt’. J. Phys. Oceanogr. 22, 1158–1177

    Article  Google Scholar 

  • Grell G.A., Dudhia J., and Stauffer D.R., (1995), Fifth-generation Penn State/NCAR Mesoscale Model (MM5), NCAR Technical note, NCAR/TN-398 + STR. (Available on internet, http://box.mmm.ucar.edu/mm5/documents/mm5-desc-pdf/).

  • 19. Holtslag A.A.M., Moeng C.-H., (1991), ‘Eddy Diffusivity and Countergradient Transport in the Convective Atmospheric Boundary Layer’. J. Atmos. Sci. 48, 1690–1698

    Article  Google Scholar 

  • 20. Hong S.-Y., Pan H.-L., (1996), ‘Nonlocal Boundary Layer Vertical Diffusion in a Medium-Range Forecast Model’. Mon. Wea. Rev. 124, 2322–2339

    Article  Google Scholar 

  • 21. Janjic Z.I., (1990), ‘The Step-Mountain Coordinate: Physical Package’. Mon Wea. Rev. 118, 1429–1443

    Article  Google Scholar 

  • 22. Janjic Z.I., (1994), ‘The Step-Mountain Eta Coordinate Model: Further Developments of the Convection, Viscous Sublayer, and Turbulence Closure Schemes’. Mon. Wea. Rev. 122, 927–945

    Article  Google Scholar 

  • 23. Lee S.M., Fernando H.J.S., (2004), ‘Evaluation of Mesoscale Meteorological Models, MM5 and HOTMAC Using PAFEX-I Data’. J. Appl. Meteorol. 43, 1133–1148

    Article  Google Scholar 

  • 24. Louis J.F., (1979), ‘A Parametric Model of Vertical Eddy Fluxes in the Atmosphere’. Boundary-Layer Meteorol. 54, 187–202

    Article  Google Scholar 

  • 25. Mahrt L., Sun J., Blumen W., Delany T., and Oncley S., (1999), ‘Nocturnal Boundary-Layer Regimes’. Boundary-Layer Meteorol. 88, 255–278

    Article  Google Scholar 

  • 26. McNider R.T., England D.E., Friedman M.J., and Shi X., (1995), ‘Predictability of the Stable Atmospheric Boundary Layer’. J. Atmos. Sci. 52, 1602–1614

    Article  Google Scholar 

  • 27. Mellor G.L., Yamada T., (1974), ‘A Hierarchy of Turbulence Closure Models for Planetary Boundary Layers’. J. Atmos. Sci. 31, 1791–1806

    Article  Google Scholar 

  • 28. Monti P., Fernando H.J.S., Princevac M., Chan W.C., Kowalewski T.A., and Pardyjak E.R., (2002), ‘Observations of Flow and Turbulence in the Nocturnal Boundary Layer Over a Slope’. J. Atmos. Sci. 59, 2513–2534

    Article  Google Scholar 

  • 29. Nieuwstadt F. T. M., (1984), ‘The Turbulent Structure of the Stable, Nocturnal Boundary Layer’. J. Atmos. Sci. 41, 2202–2216

    Article  Google Scholar 

  • 30. Pan Z., Benjamin S., Brown J.M., and Smirnova T., (1994), ‘Comparative Experiments with MAPS on Different Parameterization Schemes for Surface Moisture Flux and Boundary Layer Processes’. Mon. Wea. Rev. 122, 449–470

    Article  Google Scholar 

  • 31. Pacanowski R.C., Philander S.G.H., (1981), ‘Parameterization of Vertical Mixing in Numerical Models of the Tropical Oceans’. J. Phys. Oceanogr. 11, 1443–1451

    Article  Google Scholar 

  • Pielke R.A., Pearce R.P., (1994), Mesoscale Modeling of the Atmosphere, Meteorol. Monogr., Vol 25, No. 47, Amer. Meteorol. Soc., 156 pp.

  • 33. Poulos G.S., Blumen W., Fritts D.C., Lundquist J., Sun J., Burns S.P., Nappo C., Banta R., Newsom R., Cuxart J., Terradellas E., Balsley B., and Jensen M., (2002), ‘CASES-99: A Comprehensive Investigation of the Stable Nocturnal Boundary Layer’. Bull. Amer. Meteorol. Soc. 83, 521–536

    Article  Google Scholar 

  • 34. Riley J.J., Lelong M.P., (2000), ‘Fluid Motions in the Presence of Strong Stable Stratification’. Ann. Rev. Fluid Mech. 32, 613–657

    Article  Google Scholar 

  • 35. Rotach M.W., others (2004), ‘Turbulence Structure and Exchange Processes in an Alpine Valley: The Riviera Project’. Bull. Amer. Meteorol. Soc. 85, 1367–1385

    Article  Google Scholar 

  • 36. Sivacoumar R., Thanasekaran K., (2001), ‘Comparison and Performance Evaluation of Models Used for Vehicular Pollution Prediction’. J. Environ. Eng. 127, 524–530

    Article  Google Scholar 

  • 37. Strang E.J., Fernando H.J.S., (2001), ‘Vertical Mixing and Transports Through a Stratified Shear Layer’. J. Phys. Oceanogr. 31, 2026–2048

    Article  Google Scholar 

  • 38. Stull R.B., (1988), An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers, Dordrecht, 666 pp

    Google Scholar 

  • 39. Stull R.B., (1993), ‘Review of Non-Local Mixing in Turbulent Atmospheres: Transilient Turbulence Theory’. Boundary-Layer Meteorol. 62, 21–96

    Article  Google Scholar 

  • 40. Townsend A.A., (1980), The Structure of Turbulent Shear Flow. Cambridge University Press, UK., 440 pp

    Google Scholar 

  • 41. Troen I., Mahrt L., (1986), ‘A Simple Model of the Atmospheric Boundary Layer: Sensitivity to Surface Evaporation’. Boundary-Layer Meteorol. 37, 129–148

    Article  Google Scholar 

  • 42. Whiteman C.D., (2000), Mountain Meteorology: Fundamentals and Applications. Oxford University Press, UK., 355 pp

    Google Scholar 

  • 43. Wyngaard J.C., Brost R.A., (1984), ‘Top-Down and Bottom-Up Diffusion of a Scalar in the Convective Boundary Layer’. J. Atmos. Sci. 41, 102–112

    Article  Google Scholar 

  • 44. Xiu A., Pleim J.E., (2000), ‘Development of a Land Surface Model. Part I: Application in a Mesoscale Meteorology Model’. J. Appl. Meteorol. 40, 192–209

    Article  Google Scholar 

  • 45. Yamada T., (1983), ‘Simulations of Nocturnal Drainage Flows by a q2l Turbulence Closuer Model’. J. Atmos. Sci. 40, 91–106

    Article  Google Scholar 

  • 46. Yamada T., Bunker S., (1988), ‘Development of a Nested Grid, Second Moment Turbulence Closure Model and Application to the 1982 ASCOT Brush Creek Data Simulation’. J. Appl. Meteorol. 27, 562–578

    Article  Google Scholar 

  • 47. Zhang D., Anthes R.A., (1982), ‘A High-Resolution Model of the Planetary Boundary Layer – Sensitivity Tests and Comparisons with SESAME-79 Data’. J. Appl. Meteorol. 21, 1594–1609

    Article  Google Scholar 

  • 48. Zhang D.-L., Zheng W.-Z., (2004), ‘Diurnal Cycle of Surface Winds and Temperature as Simulated by Five Boundary Layer Parameterizations’. J. Appl. Meteorol. 43, 157–169

    Article  Google Scholar 

  • 49. Zhong S., Fast J., (2003), ‘An Evaluation of MM5, RAMS, and Meso Eta at Sub-Kilometer Resolution using VTMX Field Campaign Data in the Salt Lake Valley’. Mon. Wea. Rev. 131, 1301–1322

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Mi Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, SM., Giori, W., Princevac, M. et al. Implementation of a Stable PBL Turbulence Parameterization for the Mesoscale Model MM5: Nocturnal Flow in Complex Terrain. Boundary-Layer Meteorol 119, 109–134 (2006). https://doi.org/10.1007/s10546-005-9018-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-005-9018-4

Keywords

Navigation