Skip to main content

Advertisement

Log in

The Summer Arctic Boundary Layer during the Arctic Ocean Experiment 2001 (AOE-2001)

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Boundary-layer measurements made from the Swedish icebreaker Oden during the Arctic Ocean Experiment 2001 (AOE-2001) are analysed. They refer mainly to ice drift in the central Arctic during the period 2–21 August 2001. On board Oden a remote sensing array with a wind profiler, cloud radar and a scanning microwave radiometer, and a regular weather station operated continuously; soundings were also released during research stations. Turbulence and profile measurements on an 18-m mast were deployed on the ice, along with two sodar systems, a microbarograph array and a tethered sounding system. Surface flux and meteorological stations were also deployed on nearby ice floes. There is a clear diurnal cycle in radiation and also in wind speed, cloud base and visibility. It is absent in temperature and humidity, probably due to the very strong control by melting/ freezing ice and snow. In the advection of warm air, latent heat of melting maintains the surface temperature at 0 °C, while with a negative energy balance the latent heat of freezing of the salty ocean water acts to maintain the surface temperature > −2 °C. The constant presence of water at the surface maintains a relative humidity close to 100%, and this is also often facilitated by an increasing specific humidity through the capping inversion, making entrainment a moisture source. This ensures cloudy conditions, with low cloud and fog prevailing most of the time. Intrusions of warm and moist air from beyond the ice edge are frequent, but the local Arctic boundary layer remains at a relatively constant temperature, and is shallow and well mixed with strong capping inversions. Power spectra of surface-layer wind speed sometimes show large variance at low frequency. A scanning radiometer provides a monitoring of the vertical thermal structure with a spatial and temporal resolution not seen before in the Arctic. There are often two inversions, an elevated main inversion and a weak surface inversion, and occasionally additional inversions occur. Enhanced entrainment across the main inversion appears to occur during frontal passages. Variance of the scanning radiometer temperatures occurs in large pulses rather than varying smoothly, and the height to the maximum variance appears to be a reasonable proxy for the boundary-layer depth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • C.M. Battisti C.M. Bitz R.M. Moritz (1997) ArticleTitle‘Do General Circulation Models Underestimate the Natural Variability in the Arctic Climate?’ J. Climate 10 1909–1920 Occurrence Handle10.1175/1520-0442(1997)010<1909:DGCMUT>2.0.CO;2

    Article  Google Scholar 

  • J. A. Beesley C. S. Bretherton C. Jacob E. I. Andreas J. M. Intrieri T. A. Uttal (2000) ArticleTitle‘A Comparison of Cloud and Boundary Layer Variables in the ECMWF Forecast Model with Observations at the Surface Heat and Energy of the Arctic (SHEBA) Ice Camp’ J. Geophys. Res. 105 IssueIDD10 12337–12349 Occurrence Handle10.1029/2000JD900079

    Article  Google Scholar 

  • E. K. Bigg C. Leck E. D. Nilsson (1996) ArticleTitle‘Sudden Changes in Arctic Atmospheric Aerosol Concentrations During Summer and Autumn’ Tellus 48 254–271

    Google Scholar 

  • E. K. Bigg C. Leck (2001) ArticleTitle‘Cloud-Active Particles over the Central Arctic Area’ J. Geophys. Res. 106 IssueIDD23 32155–32166 Occurrence Handle10.1029/1999JD901152

    Article  Google Scholar 

  • E. K. Bigg C. Leck E. D. Nilsson (2001) ArticleTitle‘Sudden Changes in Aerosol and Gas Concentration in the Central Arctic Marine Boundary Layer: Causes and Consequences’ J. Geophys. Res. 106 IssueIDD23 32167–32185 Occurrence Handle10.1029/2000JD900753

    Article  Google Scholar 

  • J. A. Curry (1986) ArticleTitle‘Interactions among Turbulence, Radiation and Microphysics in Arctic Stratus Clouds’ J. Atmos. Sci. 43 90–106 Occurrence Handle10.1175/1520-0469(1986)043<0090:IATRAM>2.0.CO;2

    Article  Google Scholar 

  • J. A. Curry P. V. Hobbs M. D. King D. A. Randall P. Minnis G. A. Isaac J. O. Pinto T. Uttal A. Bucholtz D. G. Cripe H. Gerber C. W. Fairall T. J. Garrett J. Hudson J. M. Intrieri C. Jakob T. Jensen P. Lawson D. Marcotte L. Nguyen P. Pilewskie A. Rangno D. C. Rogers K. B. Strawbridge F. P. J. Valero A. G. Williams D. Wylie (2000) ArticleTitle‘FIRE Arctic Clouds Experiment’ Bull. Amer. Meteorol. Soc. 81 5–29 Occurrence Handle10.1175/1520-0477(2000)081<0005:FACE>2.3.CO;2

    Article  Google Scholar 

  • P. Frenzen C. A. Vogel (1992) ArticleTitle‘The Turbulent Kinetic Energy Budget in the Atmospheric Surface Layer: A Review and an Experimental Reexamination in the Field’ Boundary-Layer Meteorol. 60 49–76 Occurrence Handle10.1007/BF00122061

    Article  Google Scholar 

  • K. S. Gage G. D. Nastrom (1986) ArticleTitle‘Theoretical Interpretations of Atmospheric Wavenumber Spectra of Wind and Temperature Observed by Commercial Aircraft During GASP J. Atmos. Sci. 43 729–740 Occurrence Handle10.1175/1520-0469(1986)043<0729:TIOAWS>2.0.CO;2

    Article  Google Scholar 

  • P. S. Guest K. L. Davidson (1991) ArticleTitle‘The Aerodynamic Roughness of Different Types of Sea Ice’ J. Geophys. Res. 96 4709–4721

    Google Scholar 

  • U. Högström A.-S. Smedman H. Bergström (1999) ArticleTitle‘A Case Study of Two-Dimensional Turbulence’ J. Atmos. Sci. 56 959–976 Occurrence Handle10.1175/1520-0469(1999)056<0959:ACSOTD>2.0.CO;2

    Article  Google Scholar 

  • J. M. Intrieri C. W. Fairall M. D. Shupe P. O. G. Persson E. L. Andreas P. S. Guest R. E. Moritz (2002) ArticleTitle‘An Annual Cycle of Arctic Surface Cloud Forcing at SHEBA’ J. Geophys. Res. 107 IssueIDC10 8039 Occurrence Handle10.1029/2000JC000439

    Article  Google Scholar 

  • IPCC, 2001: Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change [J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, and C. A. Johnson (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 881 pp.

  • J. C. Kaimal J. E. Gaynor (1991) ArticleTitle‘Another Look at Sonic Thermometry’ Boundary-Layer Meteorol. 56 401–410 Occurrence Handle10.1007/BF00119215

    Article  Google Scholar 

  • J. C. Kaimal J. J. Finnigan (1994) ‘Atmospheric Boundary Layer Flows’ Oxford University Press Oxford, U.K. 289

    Google Scholar 

  • C. Leck E. K. Bigg D. S. Covert J. Heintzenberg W. Maenhaut E. D. Nilsson A. Wiedensohler (1996) ArticleTitle‘Overview of the Atmospheric Research Program During the International Ocean Expedition of 1991 (IAOE-1991) and Its Scientific Results’ Tellus 48 136–155 Occurrence Handle10.1034/j.1600-0889.1996.t01-1-00002.x

    Article  Google Scholar 

  • C. Leck E. K. Bigg (1999) ArticleTitle‘Aerosol Production Over Remote Marine Areas – A New Route’ Geophys. Res. Lett. 26 3577–3580 Occurrence Handle10.1029/1999GL010807

    Article  Google Scholar 

  • C. Leck E. D. Nilsson E. K. Bigg L. Bäcklin (2001a) ArticleTitle‘The Atmospheric Program of the Arctic Ocean Expedition 1996 (AOE-1996) - An Overview of Scientific Objectives, Experimental Approaches and Instruments’ J. Geophys. Res. 106 IssueIDNo. D23 32051–32067 Occurrence Handle10.1029/2000JD900461

    Article  Google Scholar 

  • C. Leck M. Norman E. K. Bigg R. Hillamo (2001) ArticleTitle‘Chemical Composition and Sources of the High Arctic Aerosol Relevant for Fog and Cloud Formation J. Geophys. Res. 107 1–17

    Google Scholar 

  • C. Leck M. Tjernström K. Bigg P. Matrai E. Swetlicki (2004) ArticleTitle‘Microbes, Clouds and Climate: Can Marine Microorganisms Influence the Melting of the Arctic Pack Ice?’ Eos Trans. 85 25–36

    Google Scholar 

  • H. Liu G. Peters T. Foken (2001) ArticleTitle‘New Equations for Sonic Temperature Variance and Buoyancy Heat Flux with an Omnidirectional Sonic Anemometer’ Boundary-Layer Meteorol. 100 459–468 Occurrence Handle10.1023/A:1019207031397

    Article  Google Scholar 

  • L. Mahrt (1998) ArticleTitle‘Stratified Atmospheric Boundary Layers and Breakdown of Models’ Theo. Comput. Fluid Dyn. 11 263–279 Occurrence Handle10.1007/s001620050093

    Article  Google Scholar 

  • G. A. Meehl G. J. Boer C. Covey M. Latif R. J. Stouffer (2000) ArticleTitle‘The Coupled Model Intercomparison Project (CMIP)’ Bull. Amer. Meteorol. Soc. 81 313–318 Occurrence Handle10.1175/1520-0477(2000)081<0313:TCMIPC>2.3.CO;2

    Article  Google Scholar 

  • E. D. Nilsson (1991) ArticleTitle‘Planetary Boundary Layer Structure and Air Mass Transport During the International Arctic Ocean Expedition 1991’ Tellus 48 178–196

    Google Scholar 

  • D. K. Perovich E. L. Andreas J. A. Curry H. Eiken C. W. Fairall T. C. Grenfell P. S. Guest J. Intrieri D. Kadko R. W. Lindsay M. G. McPhee J. Morison R. E. Moritz C. A. Paulson W. S. Pegau P. O. G. Persson R. Pinkel J. A. Richter-Menge T. Stanton H. Stern M. Sturm W. B. Tucker T. Uttal (1999) ArticleTitle‘Year on Ice Gives Climate Insights’ Eos Trans. 80 483–486

    Google Scholar 

  • Persson P. O. G., Uttal, T., Intrieri, J. M., Fairall, C. W., Andreas, E. L. and Guest, P. S.: 1999, ‘Observations of Large Thermal Transitions During the Arctic Night from a Suite of Sensors at SHEBA. Preprints, 3rd Symp. on Integrated Observing Systems, Jan. 10–15, 1999, Dallas, TX, pp. 171–174.

  • P. Persson G. Ola C. W. Fairall E. L. Andreas P. S. Guest D. K. Perovich (2002) ArticleTitle‘Measurements near the Atmospheric Surface Flux Group Tower at SHEBA: Near-surface Conditions and Surface Energy Budget’ J. Geophys. Res. 107 IssueIDC10 8045 Occurrence Handle10.1029/2000JC000705

    Article  Google Scholar 

  • J. Räisänen (2001) ArticleTitle‘CO2-induced Climate Change in the Arctic Area in the CMIP2 Experiments’ SWECLIM Newslett. 11 23–28

    Google Scholar 

  • InstitutionalAuthorNameSEARCH (2001) SEARCH: Study of Environmental Arctic Change, Science Plan Polar Science Center, Applied Physics Laboratory, University of Washington Seattle 91

    Google Scholar 

  • M. C. Serreze J. E. Walsh F. S. Chapin SuffixIII T. Osterkamp M. Dyurgerov V. Romanovsky W. C. Oechel J. Morison T. Zhang R. G. Barry (2000) ArticleTitle‘Observational Evidence of Recent Change in the Northern High-Latitude Environment’ Climate Change 46 159–207 Occurrence Handle10.1023/A:1005504031923

    Article  Google Scholar 

  • M. Tjernström A. Rune (2003) ArticleTitle‘The Turbulence Structure of Stratocumulus During the ASTEX First Lagrangian Experiment’ Quart. J. Roy. Meteorol. Soc. 129 1071–1100 Occurrence Handle10.1256/qj.02.02

    Article  Google Scholar 

  • M. Tjernström C. Leck P. O. G. Persson M. L. Jensen S. P. Oncley A. Targino (2004) ArticleTitle‘The Summertime Arctic Atmosphere: Meteorological Measurements During the Arctic Ocean Experiment 2001 (AOE-2001)’ Bull. Amer. Meteorol. Soc. 85 1305–1321 Occurrence Handle10.1175/BAMS-85-9-1305

    Article  Google Scholar 

  • Tjernström, M., Žagar, M., Svensson, G., Cassano, J., Pfeifer, S., Rinke, A., and Wyser, K.: 2004a, Modelling the Arctic Boundary Layer: An Evaluation of Six ARCMIP Regional-scale Models with Data from the SHEBA Project. Boundary-Layer Meteorol., in press.

  • Tjernström, M., Leck, C., Persson, P.O.G., Jensen, M.L., Oncley, S.P., and Targino, A.: 2004, ‘Experimental equipment’, Bull. Amer. Meteor. Soc., 83, doi: 10.1175-BAMS-85-9-Tjernstrom.

  • J. E. Walsh W. M. Kattsov W. L. Chapman V. Govorkova T. Pavlova (2002) ArticleTitle‘Comparison of Arctic Climate by Uncoupled and Coupled Global Models’ J. Climate 15 1429–1446 Occurrence Handle10.1175/1520-0442(2002)015<1429:COACSB>2.0.CO;2

    Article  Google Scholar 

  • E. Westwater Y. Han V. G. Irisov V. Leuskiy E. N. Kadygrov S. A. Viazankin (1999) ArticleTitle‘Remote Sensing of Boundary Layer Temperature Profiles by a Scanning 5-mm MicroWave Radiometer and RASS: Comparison Experiments’ J. Atmos. Oceanic Tech. 16 805–818 Occurrence Handle10.1175/1520-0426(1999)016<0805:RSOBLT>2.0.CO;2

    Article  Google Scholar 

  • J. M. Wilczak S. P. Oncley S. A. Stage (2001) ArticleTitle‘Sonic Anemometer Tilt Correction Algorithms’ Boundary-Layer Meteorol. 99 127–150 Occurrence Handle10.1023/A:1018966204465

    Article  Google Scholar 

  • S. S. Zilitinkevich (2002) ArticleTitle‘Third-order Transport due to Internal Waves and Non-local Turbulence in the Stably Stratified Surface Layer’ Quart. J. Roy. Meteorol. Soc. 128 913–926 Occurrence Handle10.1256/0035900021643746

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Tjernström.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tjernström, M. The Summer Arctic Boundary Layer during the Arctic Ocean Experiment 2001 (AOE-2001). Boundary-Layer Meteorol 117, 5–36 (2005). https://doi.org/10.1007/s10546-004-5641-8

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-004-5641-8

Keywords

Navigation