Skip to main content
Log in

One-Equation Turbulence Modelling for Atmospheric and Engineering Applications

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

A new algebraic turbulent length scale model is developed, based on previous one-equation turbulence modelling experience in atmospheric flow and dispersion calculations. The model is applied to the neutral Ekman layer, as well as to fully-developed pipe and channel flows. For the pipe and channel flows examined the present model results can be considered as nearly equivalent to the results obtained using the standard k–ɛ model. For the neutral Ekman layer, the model predicts satisfactorily the near-neutral Cabauw friction velocities and a dependence of the drag coefficient versus Rossby number very close to that derived from published (G. N. Coleman) direct numerical simulations. The model underestimates the Cabauw cross-isobaric angles, but to a less degree than the cross-isobar angle versus Rossby dependence derived from the Coleman simulation. Finally, for the Cabauw data, with a geostrophic wind magnitude of 10 ms−1, the model predicts an eddy diffusivity distribution in good agreement with semi-empirical distributions used in current operational practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • A. Andren (1991) ArticleTitleA TKE-Dissipation Model for the Atmospheric Boundary Layer’ Boundary-Layer Meteorol 25 207–221

    Google Scholar 

  • A. Andren C.H. Moeng (1993) ArticleTitleSingle Point Closures in a Neutrally Stratified Boundary Layer J Atmos Sci 50 3366–3379

    Google Scholar 

  • D.D. Apsley Castro J.P. (1997) ArticleTitleA Limited-Length Scale k-ɛ Model for the Neutral and Stably Stratified Atmospheric Boundary Layer Boundary-Layer Meteorol. 83 75–98

    Google Scholar 

  • J.G. Bartzis (1989) ArticleTitleTurbulent Diffusion Modelling for Wind Flow and Dispersion Analysis Atmos Environ 23 1963–1969

    Google Scholar 

  • Bartzis J.G. (1991) ADREA-HF: A Three-Dimensional Finite Volume Code for Vapor Cloud Dispersion in Complex Terrain, Report EUR 13580 EN

  • Blackadar A.K. (1965) A Single Layer Theory of the Vertical Distribution of Wind in a Baroclinic Neutral Atmospheric Boundary Layer. In: Flux of Heat and Momentum in the Planetary Boundary Layer of the Atmosphere, Final Report, Department of Meteorology. The Pennsylvania State University, University Park, PA, pp 1–22

  • G.N. Coleman (1999) ArticleTitleSimilarity Statistics from a Direct Numerical Simulation of the Neutrally Stratified Planetary Boundary Layer J Atmos Sci 56 891–900

    Google Scholar 

  • Comte-Bellot, G.: 1965, Coulement turbulent entre deux parois paralleles, Publications Scientifiques et Techniques du Ministere de l’Air

  • E.L. Deacon (1973) ArticleTitleGeostrophic drag coefficients Boundary-Layer Meteorol 5 321–340

    Google Scholar 

  • P. Deligiannis N. Catsaros M. Varvayanni J.G. Bartzis (1997) ArticleTitleMeteorological Preprocessing over Highly Complex Terrain Radiat Prot Dosim 73 253–256

    Google Scholar 

  • H.W. Detering D. Etling (1985) ArticleTitleApplication of the E−ɛ Turbulence Model to the Atmospheric Boundary Layer Boundary-Layer Meteorol 33 113–133

    Google Scholar 

  • Draxler R.R., Hess G.D. (1997) Description of the HYSPLIT_4 Modeling System. NOAA Technical Memorandum ERL ARL-224, 24 pp

  • P.G. Duynkereke (1988) ArticleTitleApplication of the E-ɛ Turbulence Model in the Atmospheric Boundary Layer J Atmos Sci 45 865–880

    Google Scholar 

  • A.F.R. Freedman B.M.Z. Jacobson (2002) ArticleTitleTransport-Dissipation Analytical Solutions to the E-ɛ Turbulence Model and their Role in Predictions of the Neutral ABL Boundary-Layer Meteorol 102 117–138

    Google Scholar 

  • J.R. Garratt (1994) The Atmospheric Boundary Layer Cambridge University Press Cambridge 316

    Google Scholar 

  • G.D. Hess J.R. Garratt (2002) ArticleTitleEvaluating Models of the Neutral, Barotropic Planetary Boundary Layer Using Integral Measures: Part I Overview Boundary-Layer Meteorol 104 333–358

    Google Scholar 

  • J.O. Hinze (1959) Turbulence An Introduction to its Mechanism and Theory Mc-Graw Hill New York 586

    Google Scholar 

  • Laufer J. (1954) The Structure of Turbulence in Fully-Developed Pipe Flow. Nat Advis Com Aeronaut Technical Report No. 1174

  • B.E. Launder D.B. Spalding (1972) Lectures in Mathematical Models of Turbulence Academic Press London 168

    Google Scholar 

  • B.E. Launder D.B. Spalding (1974) ArticleTitleThe Numerical Computation of Turbulent Flows Comp Meth Appl Mech Engineer 3 269–289

    Google Scholar 

  • H.H. Lettau (1962) ArticleTitleTheoretical Wind Spirals in the Boundary Layer of a Barotropic Atmosphere Beitr Phys Atm 35 195–212

    Google Scholar 

  • G.L. Mellor T. Yamada (1982) ArticleTitleDevelopment of a Turbulence Closure Model for Geophysical Fluid Problems Rev Geophys Space Phys 20 851–875

    Google Scholar 

  • K.H. Ng D.B. Spalding (1972) ArticleTitleTurbulence Model for Boundary Layers near Walls Phys Fluids 15 20–30

    Google Scholar 

  • J.J. O’Brien (1970) ArticleTitleA Note on the Vertical Structure of the Eddy Exchange Coefficient in the Planetary Boundary Layer J Atmos Sci 27 1213–1215

    Google Scholar 

  • J.M. Österlund A.V. Johansson H.M. Magib M.H. Hites (2000) ArticleTitleA Note on the Overlap Region in Turbulent Boundary Layers Phys Fluids 12 1–4

    Google Scholar 

  • H.A. Panofsky J.A. Dutton (1984) Atmospheric Turbulence John Wiley and Sons New York 397

    Google Scholar 

  • I. Troen L. Mahrt (1986) ArticleTitleA Simple-Model of the Atmospheric Boundary-Layer – Sensitivity to Surface Evaporation Boundary-Layer Meteorol 37 129–148

    Google Scholar 

  • Van Ulden A.P., Holtslag A.A.M. (1980) The Wind at Heights between 10 m and 200 m in Comparison with the Geostrophic Wind. J Proc Sem Radioactive Releases Vol. 1, Risö Denmark, C.E.C. Luxemburg pp 83–92

  • A.P. Van Ulden A.A.M. Holtslag (1985) ArticleTitleEstimation of Atmospheric Boundary Layer Parameters for Diffusion Applications J Climate Appl Meteorol 24 1196–1207

    Google Scholar 

  • A.P. Van Ulden J. Wieringa (1996) ArticleTitleAtmospheric Boundary Layer Research at Cabauw Boundary-Layer Meteorol 78 39–69

    Google Scholar 

  • T. Wei W.W. Willmarth (1989) ArticleTitleReynolds Number Effects on the Structure of a Turbulent Channel Flow J Fluid Mech 204 57–95

    Google Scholar 

  • D.C. Wilcox (1993) Turbulence Modeling for CFD DCW Industries Inc La Canada CA 84

    Google Scholar 

  • D. Xu P.A. Taylor (1997) ArticleTitleAn E-ɛ-l Turbulence Closure Scheme for Planetary Boundary Layer Models: The Neutrally Stratified Case Boundary-Layer Meteorol 84 247–266

    Google Scholar 

  • M.V. Zagarola A.J. Smits (1998) ArticleTitleMean-Flow Scaling of Turbulent Pipe Flow J Fluid Mech 373 33–79

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Venetsanos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Venetsanos, A.G., Bartzis, J.G. & Andronopoulos, S. One-Equation Turbulence Modelling for Atmospheric and Engineering Applications. Boundary-Layer Meteorol 113, 321–346 (2004). https://doi.org/10.1007/s10546-004-4835-4

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-004-4835-4

Keywords

Navigation