Skip to main content
Log in

Compressibility Effectsy in One-Equation Turbulence Models

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

The one-equation turbulence models by Spalart and Allmaras (SA) and Sekundov et al. (Nut-92) are tested against two compressible two-dimensional flows, namely, the turbulent flat-plate boundary layer at zero pressure gradient and the mixing layer. The boundary layer (BL) approximation is applied to the system of Reynolds equations (RANS). The BL results obtained are compared with the available RANS results and the results of direct numerical simulation (DNS). The modified Nut-92m model proposed predicts the characteristics of the turbulent flat-plate boundary layer at zero pressure gradient more accurately than the Nut-92 and SA models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. D. C. Wilcox, Turbulence Modeling for CFD (DCW Industries, Canada, CA, 2006).

    Google Scholar 

  2. Langley Research Center. NASA Turbulence Modeling Resource. https://turbmodels.larc.nasa.gov/

  3. P. R. Spalart and S. R. Allmaras, “A one-equation turbulence model for aerodynamics flows,” Recherche Aérospatiale No. 1, 5–21 (1994). https://doi.org/10.2514/6.1992-439

    Article  Google Scholar 

  4. A. N. Gulyaev, V. E. Kozlov, and A. N. Sekundov, “A universal one-equation model for turbulent viscosity,” Fluid Dynamics 28(4), 485—494 (1993).

    Article  ADS  Google Scholar 

  5. X. Han, M. M. Rahman, and R. K. Agarwal, “Development and application of a wall distance free Wray—Agarwal turbulence model (WA2018),” AIAA Paper No. 0593 (2018). https://doi.org/10.2514/6.2018-0593

  6. P. Bradshaw, B. Launder, and J. Lumley, “Collaborative testing of turbulence models,” AIAA Paper No. 0215 (1991). https://doi.org/10.2514/6.1991-215

  7. M. Shur, M. Strelets, L. Zaikov, A. Gulyaev, V. KozIov, and A. Secundov, “Comparative numerical testing of one- and two-equation turbulence models for flows with separation and reattachement,” AIAA Paper No. 0863 (1995). https://doi.org/10.2514/6.1995-863

  8. C. Zhang, L. Duan, and M. M. Choudhari, “Direct numerical simulation database for supersonic and hypersonic turbulent boundary layers,” AIAA J. 56(11), 4297–4311 (2018). https://doi.org/10.2514/1.J057296

    Article  ADS  Google Scholar 

  9. J. Huang, J.-V. Bretzke, and L. Duan, “Assessment of turbulence models in a hypersonic cold-wall turbulent boundary layer,” Fluids 4(37), 10 (2019). https://doi.org/10.3390/fluids4010037

    Article  Google Scholar 

  10. D. Zhang, J. Tan, and X. Yao, “Direct numerical simulation of spatially developing highly compressible mixing layer: Structural evolution and turbulent statistics,” Phys. Fluids 31(3), 036102 (2019). https://doi.org/10.1063/1.5087540

    Article  ADS  Google Scholar 

  11. V. R. Kuznetsov, A. B. Lebedev, A. N. Sekundov, and I. P. Smirnova. “Calculation of a turbulent diffusion combustion flame core, taking account of concentration pulsation and Archimedean forces,” Fluid Dynamics 12(1), 24—33 (1977).

    Article  ADS  Google Scholar 

  12. V. N. Rasshchupkin and A. N. Sekundov, “Applicability of the boundary-layer approximation to the calculation of a plane turbulent boundary layer,” Fluid Dynamics 11(5), 683—688 (1976).

    Article  ADS  Google Scholar 

  13. F. G. Keyes, “A summary of viscosity and heat-conduction data for helium, argon, hydrogen, oxygen, nitrogen, carbon monoxide, carbon dioxide, water and air,” Trans. Am. Mech. Engrs. 73, 589–595 (1951).

    Google Scholar 

  14. N. B. Vargaftik, Handbook on Thermal Properties of Gases and Liquids (Nauka, Moscow 1972) [in Russian].

    Google Scholar 

  15. L. G. Loytsyanskii, Mechanics of Liquids and Gases (Pergamon Press, Oxford, 1966).

    Google Scholar 

  16. P. E. Dimotakis, “Two-dimensional shear-layer entrainment,” AIAA J. 24(11), 1791–1796 (1986). https://doi.org/10.2514/3.9525

    Article  ADS  Google Scholar 

  17. S. Fu and Q. B. Li, “Numerical simulation of compressible mixing layers,” Int. J. Heat Fluid Flow 27(5), 895–901 (2006). https://doi.org/10.1016/j.ijheatfluidflow.2006.03.028

    Article  Google Scholar 

  18. C. Pantano and S. Sarkar, “A study of compressibility effects in the high speed turbulent shear layer using direct simulation,” J. Fluid Mech. 451, 329–371 (2002). https://doi.org/10.1017/S0022112001006978

    Article  ADS  MATH  Google Scholar 

  19. Q. Zhou, F. He, and M. Y. Shen, “Direct numerical simulation of a spatially developing compressible plane mixing layer: Flow structures and mean flow properties,” J. Fluid Mech. 711, 437–468 (2012). https://doi.org/10.1017/jfm.2012.400

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. J. B. Freund, S. K. Lele, and P. Moin, “Compressibility effects in a turbulent annular mixing layer. Part 1. Turbulence and growth rate,” J. Fluid Mech. 421, 229–267 (2000). https://doi.org/10.1017/S0022112000001622

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. S. Arun, A. Sameen, and B. Srinivasan, “Structure of vorticity field in compressible turbulent mixing layers,” Physica Scripta 94(9), (2019). https://doi.org/10.1088/1402-4896/ab0aad

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Kozlov.

Ethics declarations

The Author declares no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Translated by M. Lebedev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozlov, V.E. Compressibility Effectsy in One-Equation Turbulence Models. Fluid Dyn 56, 622–629 (2021). https://doi.org/10.1134/S0015462821050074

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462821050074

Keywords:

Navigation