Skip to main content
Log in

Congenital disorders of glycosylation: new defects and still counting

  • ICIEM Symposium 2013
  • Published:
Journal of Inherited Metabolic Disease

Abstract

Almost 50 inborn errors of metabolism have been described due to congenital defects in N-linked glycosylation. These phenotypically diverse disorders typically present as clinical syndromes, affecting multiple systems including the central nervous system, muscle function, transport, regulation, immunity, endocrine system, and coagulation. An increasing number of disorders have been discovered using novel techniques that combine glycobiology with next-generation sequencing or use tandem mass spectrometry in combination with molecular gene-hunting techniques. The number of “classic” congenital disorders of glycosylation (CDGs) due to N-linked glycosylation defects is still rising. Eight novel CDGs affecting N-linked glycans were discovered in 2013 alone. Newly discovered genes teach us about the significance of glycosylation in cell–cell interaction, signaling, organ development, cell survival, and mosaicism, in addition to the consequences of abnormal glycosylation for muscle function. We have learned how important glycosylation is in posttranslational modification and how glycosylation defects can imitate recognizable, previously described phenotypes. In many CDG subtypes, patients unexpectedly presented with long-term survival, whereas some others presented with nonsyndromic intellectual disability. In this review, recently discovered N-linked CDGs are described, with a focus on clinical presentations and therapeutic ideas. A diagnostic approach in unsolved N-linked CDG cases with abnormal transferrin screening results is also suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ApoC-III:

Apoprotein C-III

CDG:

Congenital disorders of glycosylation

CK:

Creatine kinase

CNS:

Central nervous system

CMS:

Congenital myasthenic syndromes

DPM:

Dolichol phosphomannose

ER:

Endoplasmic reticulum

GDP:

Guanosine diphosphate

GPI:

Glycophosphatidylinositol

ID:

Intellectual disability

MS:

Mass spectrometry

MS/MS:

Tandem mass spectrometry

NGS:

Next-generation sequencing

OST:

Oligosaccharyltransferase

PMI:

Phosphomannose isomerase

TIEF:

Transferrin isoelectric focusing

TRAP:

Translocon-associated protein

UDP:

Uridine diphosphate

References

  • Barone R, Aiello C, Race V, Morava E, Foulquier F, Riemersma M, Passarelli C, Concolino D, Carella M, Santorelli F et al (2012) DPM2-CDG: a muscular dystrophy-dystroglycanopathy syndrome with severe epilepsy. Ann Neurol 72:550–558

    Article  CAS  PubMed  Google Scholar 

  • Belaya K, Finlayson S, Slater CR, Cossins J, Liu WW, Maxwell S, McGowan SJ, Maslau S, Twigg SR, Walls TJ et al (2012) Mutations in DPAGT1 cause a limb-girdle congenital myasthenic syndrome with tubular aggregates. Am J Hum Genet 91:193–201

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cossins J, Belaya K, Hicks D, Salih MA, Finlayson S, Carboni N, Liu WW, Maxwell S, Zoltowska K, Farsani GT, Laval S, Seidhamed MZ, WGS500 Consortium, Donnelly P, Bentley D, McGowan SJ, Müller J, Palace J, Lochmüller H, Beeson D (2013) Congenital myasthenic syndromes due to mutations in ALG2 and ALG14. Brain 136(Pt 3):944–956

    Article  PubMed Central  PubMed  Google Scholar 

  • de Lonlay P, Seta N (2009) The clinical spectrum of phosphomannose isomerase deficiency, with an evaluation of mannose treatment for CDG-Ib. Biochim Biophys Acta 1792:841–843

    Article  PubMed  Google Scholar 

  • Drijvers JM, Lefeber DJ, de Munnik SA, Pfundt R, van de Leeuw N, Marcelis C, Thiel C, Koerner C, Wevers RA, Morava E (2010) Skeletal dysplasia with brachytelephalangy in a patient with a congenital disorder of glycosylation due to ALG6 gene mutations. Clin Genet 77:507–509

    Article  CAS  PubMed  Google Scholar 

  • Foulquier F, Amyere M, Jaeken J et al (2012) TMEM165 deficiency causes a congenital disorder of glycosylation. Am J Hum Genet 91:15–26

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Freeze HH (2013) Understanding human glycosylation disorders: biochemistry leads the charge. J Biol Chem 288:6936–6945

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Funke S, Gardeitchik T, Kouwenberg D, Mohamed M, Wortmann SB, Korsch E, Adamowicz M, Al-Gazali L, Wevers RA, Horvath A, Lefeber DJ, Morava E (2013) Perinataln and early infantile symptoms in congenital disorders of glycosylation. Am J Med Genet A 161A:578–584

    Article  PubMed  Google Scholar 

  • Gardeitchik T, Mohamed M, Fischer B, Lammens M, Lefeber D, Lace B, Parker M, Kim KJ, Lim BC, Häberle J, Garavelli L, Jagadeesh S, Kariminejad A, Guerra D, Leão M, Keski-Filppula R, Brunner H, Nijtmans L, van den Heuvel B, Wevers R, Kornak U, Morava E (2013) Clinical and biochemical features guiding the diagnostics in neurometabolic cutis laxa. Eur J Hum Genet PubMed PMID: 23963297

  • Guillard M, Morava E, van Delft FL, Hague R, Korner C, Adamowicz M, Wevers RA, Lefeber DJ (2011) Plasma N-glycan profiling by mass spectrometry for congenital disorders of glycosylation type II. Clin Chem 57:593–602

    Article  CAS  PubMed  Google Scholar 

  • Hucthagowder V, Morava E, Kornak U, Lefeber DJ, Fischer B, Dimopoulou A, Aldinger A, Choi J, Davis EC, Abuelo DN, Adamowicz M, Al-Aama J, Basel-Vanagaite L, Fernandez B, Greally MT, Gillessen-Kaesbach G, Kayserili H, Lemyre E, Tekin M, Türkmen S, Tuysuz B, Yüksel-Konuk B, Mundlos S, Van Maldergem L, Wevers RA, Urban Z (2009) Loss-of-function mutations in ATP6V0A2 impair vesicular trafficking, tropoelastin secretion and cell survival. Hum Mol Genet 18:2149–2165

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jaeken J (2010) Congenital disorders of glycosylation. Ann N Y Acad Sci 1214:190–198

    Article  CAS  PubMed  Google Scholar 

  • Jaeken J, Hennet T, Matthijs G, Freeze HH (2009a) CDG nomenclature: time for a change! Biochim Biophys Acta 1792:825–826

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jaeken J, Vleugels W, Régal L, Corchia C, Goemans N, Haeuptle MA, Foulquier F, Hennet T, Matthijs G, Dionisi-Vici C (2009b) RFT1-CDG: deafness as a novel feature of congenital disorders of glycosylation. J Inherit Metab Dis 32(Suppl 1):S335–S338

    Article  PubMed  Google Scholar 

  • Janssen MCH, de Kleine RH, van den Berg AP, Heijdra Y, van Scherpenzeel M, Lefeber DJ, Morava E (2014) Successful liver transplantation and long-term follow-up in a patient with MPI-CDG. Pediatrics, in press

  • Jones C, Denecke J, Sträter R et al (2011) A novel type of macrothrombocytopenia associated with a defect in a2,3-sialylation. Am J Pathol 179:1969–1977

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kapusta L, Zucker N, Frenckel G, Medalion B, Ben Gal T, Birk E, Mandel H, Nasser N, Morgenstern S, Zuckermann A, Lefeber DJ, de Brouwer A, Wevers RA, Lorber A, Morava E (2013) From discrete dilated cardiomyopathy to successful cardiac transplantation in congenital disorders of glycosylation due to dolichol kinase deficiency (DK1-CDG). Heart Fail Rev 18:187–196

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kodera H, Nakamura K, Osaka H, Maegaki Y, Haginoya K, Mizumoto S, Kato M, Okamoto N, Iai M, Kondo Y, Nishiyama K, Tsurusaki Y, Nakashima M, Miyake N, Hayasaka K, Sugahara K, Yuasa I, Wada Y, Matsumoto N, Saitsu H (2013) De novo mutations in SLC35A2 encoding a UDP-galactose transporter cause early-onset epileptic encephalopathy. Hum Mutat 34:1708–1714

    Article  CAS  PubMed  Google Scholar 

  • Krawitz PM, Murakami Y, Riess A, Hietala M, Kruger U, Zhu N, Kinoshita T, Mundlos S et al (2013) PGAP2 mutations, affecting the GPI-anchor-synthesis pathway, cause hyperphosphatasia with mental retardation syndrome. Am J Hum Genet 92:584–589

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lefeber DJ, Schonberger J, Morava E, Guillard M, Huyben KM, Verrijp K, Grafakou O, Evangeliou A, Preijers FW, Manta P et al (2009) Deficiency of Dol-P-Man synthase subunit DPM3 bridges the congenital disorders of glycosylation with the dystroglycanopathies. Am J Hum Genet 85:76–86

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lefeber DJ, Morava E, Jaeken J (2011) How to find and diagnose a CDG due to defective N-glycosylation. J Inherit Metab Dis 34:849–852

    Article  PubMed Central  PubMed  Google Scholar 

  • Linssen M, Mohamed M, Wevers RA, Lefeber DJ, Morava E (2013) Thrombotic complications in patients with PMM2-CDG. Mol Genet Metab 109:107–111

    Article  CAS  PubMed  Google Scholar 

  • Losfeld ME, Ng BG, Kircher M, Buckingham KJ, Turner EH, Eroshkin A, Smith JD, Shendure J, Nickerson DA, Bamshad MJ, University of Washington Center for Mendelian Genomics, Freeze HH (2013) A new congenital disorder of glycosylation caused by a mutation in SSR4, the signal sequence receptor 4 protein of the TRAP complex. Hum Mol Genet. [Epub ahead of print] PubMed PMID: 24218363

  • Martinez-Duncker I, Dupré T, Piller V, Piller F, Candelier JJ, Trichet C, Tchernia G, Oriol R, Mollicone R (2005) Genetic complementation reveals a novel human congenital disorder of glycosylation of type II, due to inactivation of the Golgi CMP-sialic acid transporter. Blood 105:2671–2676

    Article  CAS  PubMed  Google Scholar 

  • Mercuri E, Muntoni F (2012) The ever-expanding spectrum of congenital muscular dystrophies. Ann Neurol 72:9–17

    Article  PubMed  Google Scholar 

  • Misfeldt AM, Freeze, HH, Morava E, Ficicioglu C, Stanley CA (2013) Hypoglycemia and increased insulin secretion in a new form of glycogen storage disease due to phosphoglucomutase-1 deficiency [abstract]. In: Pediatric Academic Societies Annual Meeting; 2013 May 4–7; Washington, DC: E-PAS2013:2820.8

  • Mohamed M, Guillard M, Wortmann SB, Cirak S, Marklova E, Michelakakis H, Korsch E, Adamowicz M, Koletzko B, van Spronsen FJ et al (2011a) Clinical and diagnostic approach in unsolved CDG patients with a type 2 transferrin pattern. Biochim Biophys Acta 1812:691–698

    Article  CAS  PubMed  Google Scholar 

  • Mohamed M, Cantagrel V, Al-Gazali L, Wevers RA, Lefeber DJ, Morava E (2011b) Normal glycosylation screening does not rule out SRD5A3-CDG. Eur J Hum Genet 19:1019

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mohamed M, Kouwenberg D, Gardeitchik T, Kornak U, Wevers RA, Morava E (2011c) Metabolic cutis laxa syndromes. J Inherit Metab Dis 34:907–916

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mohamed M, Ashikov A, Guillard M, Robben JH, Schmidt S, van den Heuvel B, de Brouwer AP, Gerardy-Schahn R, Deen PM, Wevers RA, Lefeber DJ, Morava E (2013) Intellectual disability and bleeding diathesis due to deficient CMP--sialic acid transport. Neurology 81:681–687

    Article  CAS  PubMed  Google Scholar 

  • Morava E, Zeevaert R, Korsch E, Huijben K, Wopereis S, Matthijs G, Keymolen K, Lefeber DJ, De Meirleir L, Wevers RA (2007) A common mutation in the COG7 gene with a consistent phenotype including microcephaly, adducted thumbs, growth retardation, VSD and episodes of hyperthermia. Eur J Hum Genet 15:638–645

    Article  CAS  PubMed  Google Scholar 

  • Morava E, Wevers RA, Cantagrel V, Hoefsloot LH, Al-Gazali L, Schoots J, van Rooij A, Huijben K, van Ravenswaaij-Arts CM, Jongmans MC et al (2010) A novel cerebello-ocular syndrome with abnormal glycosylation due to abnormalities in dolichol metabolism. Brain 133:3210–3220

    Article  PubMed  Google Scholar 

  • Murakami Y, Kanzawa N, Saito K, Krawitz PM, Mundlos S, Robinson PN, Karadimitris A, Maeda Y, Kinoshita T (2012) Mechanism for release of alkaline phosphatase caused by glycosylphosphatidylinositol deficiency in patients with hyperphosphatasia mental retardation syndrome. J Biol Chem 287:6318–6325

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ng BG, Buckingham KJ, Raymond K, Kircher M, Turner EH, He M, Smith JD, Eroshkin A, Szybowska M, Losfeld ME, Chong JX, Kozenko M, Li C, Patterson MC, Gilbert RD, Nickerson DA, Shendure J, Bamshad MJ, University of Washington Center for Mendelian Genomics, Freeze HH (2013) Mosaicism of the UDP-galactose transporter SLC35A2 causes a congenital disorder of glycosylation. Am J Hum Genet 92:632–636

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Perez B, Medrano C, Ecay MJ et al (2013) A novel congenital disorder of glycosylation type without central nervous system involvement caused by mutations in the phosphogluco-mutase 1 gene. J Inherit Metab Dis 36:535–542

    Article  PubMed  Google Scholar 

  • Rafiq MA, Kuss AW, Puettmann L et al (2011) Mutations in the alpha 1,2-mannosidase gene, MAN1B1, cause autosomal recessive intellectual disability. Am J Hum Genet 89:176–182

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rymen D, Peanne R, Millón MB, Race V, Sturiale L, Garozzo D, Mills P, Clayton P, Asteggiano CG, Quelhas D, Cansu A, Martins E, Nassogne MC, Gonçalves-Rocha M, Topaloglu H, Jaeken J, Foulquier F, Matthijs G (2013) MAN1B1 deficiency: an unexpected CDG-II. PLoS Genet 9:e1003989

    Article  PubMed Central  PubMed  Google Scholar 

  • Shrimal S, Ng BG, Losfeld ME, Gilmore R, Freeze HH (2013) Mutations in STT3A and STT3B cause two congenital disorders of glycosylation. Hum Mol Genet 22:4638–4645

    Article  CAS  PubMed  Google Scholar 

  • Tegtmeyer LC, Rust S, van Scherpenzeel M, Ng BG, Losfeld ME, et al. (2014) Multiple phenotypes in phosphoglucomutase 1 deficiency. N Engl J Med 370:533–42. doi:10.1056/NEJMoa1206605. PubMed PMID: 24499211

  • Theodore M, Morava E (2011) Congenital disorders of glycosylation: sweet news. Curr Opin Pediatr 23:581–587

    Article  CAS  PubMed  Google Scholar 

  • Timal S, Hoischen A, Lehle L, Adamowicz M, Huijben K, Sykut-Cegielska J, Paprocka J, Jamroz E, van Spronsen FJ, Korner C et al (2012) Gene identification in the congenital disorders of glycosylation type I by whole-exome sequencing. Hum Mol Genet 21:4151–4161

    Article  CAS  PubMed  Google Scholar 

  • van de Loo KF, van Dongen L, Mohamed M, Gardeitchik T, Kouwenberg TW, Wortmann SB, Rodenburg RJ, Lefeber DJ, Morava E, Verhaak CM (2013) Socio-emotional problems in children with CDG. J Inherit Metab Dis Rep 11:139–148

    Google Scholar 

  • van Scherpenzeel M, Timal S, Raymond K et al. (2012) PGM1-deficiency with abnormal protein glycosylation; easy diagnosis and dietary intervention. JIMD. 35(Suppl. 1): S20

  • Van Scherpenzeel M, Timal S, Rymen D, Hoischen A, Wuhrer M et al (2014) Diagnostic serum glycosylation profile in patients with intellectual disability due to MAN1B1 deficiency. Brain 137:1030–1038

    Article  PubMed  Google Scholar 

  • Vermeer S, Kremer HP, Leijten QH, Scheffer H, Matthijs G, Wevers RA, Knoers NA, Morava E, Lefeber DJ (2007) Cerebellar ataxia and congenital disorder of glycosylation Ia (CDG-Ia) with normal routine CDG screening. J Neurol 254:1356–1358

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Rush JS, Karaoglu D, Krasnewich D, Lubinsky MS, Waechter CJ, Gilmore R, Freeze HH (2003) Deficiency of UDP-GlcNAc:Dolichol Phosphate N-Acetylglucosamine-1 Phosphate Transferase (DPAGT1) causes a novel congenital disorder of Glycosylation Type Ij. Hum Mutat 22:144–150

    Article  CAS  PubMed  Google Scholar 

  • Zeevaert R, Foulquier F, Dimitrov B et al (2009) Cerebrocostomandibular-like syndrome and a mutation in the conserved oligomeric Golgi complex, subunit 1. Hum Mol Genet 18:517–524

    Article  CAS  PubMed  Google Scholar 

  • Zeevaert R, de Zegher F, Sturiale L, Garozzo D, Smet M, Moens M, Matthijs G, Jaeken J (2013) Bone dysplasia as a key feature in three patients with a novel Congenital Disorder of Glycosylation (CDG) Type II due to a deep intronic splice mutation in TMEM165. J Inherit Metab Dis Rep 8:145–152

    CAS  Google Scholar 

  • Zhang Y, Yu X, Ichikawa M, Lyons JJ, Datta S, Lamborn IT et al. (2014) Autosomal recessive phosphoglucomutase 3 (PGM3) mutations link glycosylation defects to atopy, immune deficiency, autoimmunity, and neurocognitive impairment. J Allergy Clin Immunol doi:10.1016/j.jaci.2014.02.013. [Epub ahead of print] PubMed PMID: 24589341

Download references

Acknowledgments

The authors are grateful for the support of the Hayward Trustees, the LaCATS grant (2014), and our patients.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Morava.

Additional information

Communicated by: Jaak Jaeken

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

(DOCX 136 kb)

Supplementary Fig. 1

Glycosylation pathway based on the figure by Wopereis et al. Dolichol-phosphate mannose activates mannose (green circle) and synthesizes dolichol (black parabola) to start the stepwise endoplasmic reticulum (ER)-associated glycan synthesis before the glycan chain is synthesized along the membrane and then translocated to the inner ER membrane. Glucose (blue circles) residues are added to signal oligosaccharyltransferase, and the glycan leaves dolichol and is transferred to the protein. Further steps are in the three Golgi apparatus compartments. Galactose (yellow circles) and sialic acid (pink parabolas) are transported to the Golgi apparatus and added in the final steps. Disorders are labeled in red. New diseases are highlighted in grey boxes. (GIF 265 kb)

High Resolution Image (TIFF 1521 kb)

Supplementary Fig. 2

Diagnostic flowchart in suspected N-linked glycosylation disorder. Screening starts with transferrin isoelectric focusing (TIEF) [or mass spectroscopy (MS)], revealing either a type 1 or 2 congenital disorders of glycosylation (CDG) pattern. In patients with a CDG-I, blood or fibroblast phosphomannose isomerase (PMI) and phosphomannomutase (PMM) enzyme activity measurements are indicated. In the case of negative results (blue arrow), lipid-linked oligosaccharide analysis in fibroblasts might reveal a specific biochemical diagnosis. In CDG-II, additional apoprotein C (ApoC)-III isofocusing or tandem MS (MS/MS) can narrow down the possible candidate genes. Direct sequencing can be performed in characteristic syndromal presentations. In unsolved cases (blue arrow), next-generation sequencing (NGS) might be the best diagnostic approach. (GIF 281 kb)

High Resolution Image (TIFF 1521 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scott, K., Gadomski, T., Kozicz, T. et al. Congenital disorders of glycosylation: new defects and still counting. J Inherit Metab Dis 37, 609–617 (2014). https://doi.org/10.1007/s10545-014-9720-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-014-9720-9

Keywords

Navigation