Advertisement

Journal of Inherited Metabolic Disease

, Volume 37, Issue 4, pp 541–551 | Cite as

Ketone body metabolism and its defects

  • Toshiyuki Fukao
  • Grant Mitchell
  • Jörn Oliver Sass
  • Tomohiro Hori
  • Kenji Orii
  • Yuka Aoyama
ICIEM Symposium 2013

Abstract

Acetoacetate (AcAc) and 3-hydroxybutyrate (3HB), the two main ketone bodies of humans, are important vectors of energy transport from the liver to extrahepatic tissues, especially during fasting, when glucose supply is low. Blood total ketone body (TKB) levels should be evaluated in the context of clinical history, such as fasting time and ketogenic stresses. Blood TKB should also be evaluated in parallel with blood glucose and free fatty acids (FFA). The FFA/TKB ratio is especially useful for evaluation of ketone body metabolism. Defects in ketogenesis include mitochondrial HMG-CoA synthase (mHS) deficiency and HMG-CoA lyase (HL) deficiency. mHS deficiency should be considered in non-ketotic hypoglycemia if a fatty acid beta-oxidation defect is suspected, but cannot be confirmed. Patients with HL deficiency can develop hypoglycemic crises and neurological symptoms even in adolescents and adults. Succinyl-CoA-3-oxoacid CoA transferase (SCOT) deficiency and beta-ketothiolase (T2) deficiency are two defects in ketolysis. Permanent ketosis is pathognomonic for SCOT deficiency. However, patients with “mild” SCOT mutations may have nonketotic periods. T2-deficient patients with “mild” mutations may have normal blood acylcarnitine profiles even in ketoacidotic crises. T2 deficient patients cannot be detected in a reliable manner by newborn screening using acylcarnitines. We review recent data on clinical presentation, metabolite profiles and the course of these diseases in adults, including in pregnancy.

Keywords

AcAc Ketone Body Urinary Organic Acid Urinary Organic Acid Analysis Total Ketone Body 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank the many physicians who have referred samples and shared clinical data of patients suspected to be deficient in T2 or SCOT. This study was supported in part by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan and Health and Labor Science Research Grants for Research on Intractable Diseases from the Ministry of Health, Labor and Welfare of Japan.

Compliance with Ethics Guidelines

Conflict of Interest

None.

Human and Animal Rights and Informed Consent

This is a review article, hence, this article does not contain any studies with human or animal subjects performed by any of the authors.

References

  1. Aledo R, Mir C, Dalton RN et al (2006) Refining the diagnosis of mitochondrial HMG-CoA synthase deficiency. J Inherit Metab Dis 29(1):207–211PubMedCrossRefGoogle Scholar
  2. Aledo R, Zschocke J, Pie J et al (2001) Genetic basis of mitochondrial HMG-CoA synthase deficiency. Hum Genet 109(1):19–23PubMedCrossRefGoogle Scholar
  3. Baric I, Sarnavka V, Fumic K et al (2001) A new case of succinyl-CoA:acetoacetate transferase deficiency: favourable course despite very low residual activity. J Inherit Metab Dis 24(1):81–82PubMedCrossRefGoogle Scholar
  4. Berry GT, Fukao T, Mitchell GA et al (2001) Neonatal hypoglycaemia in severe succinyl-CoA: 3-oxoacid CoA-transferase deficiency. J Inherit Metab Dis 24(5):587–595PubMedCrossRefGoogle Scholar
  5. Bischof F, Nägele T, Wanders RJ, Trefz FK, Melms A (2004) 3‐hydroxy‐3‐methylglutaryl‐CoA lyase deficiency in an adult with leukoencephalopathy. Ann Neurol 56(5):727–730PubMedCrossRefGoogle Scholar
  6. Bonnefont JP, Specola NB, Vassault A et al (1990) The fasting test in paediatrics: application to the diagnosis of pathological hypo- and hyperketotic states. Eur J Pediatr 150(2):80–85PubMedCrossRefGoogle Scholar
  7. Bouchard L, Robert MF, Vinarov D et al (2001) Mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase deficiency: clinical course and description of causal mutations in two patients. Pediatr Res 49(3):326–331PubMedCrossRefGoogle Scholar
  8. Buhas D, Bernard G, Fukao T, Decarie JC, Chouinard S, Mitchell GA (2013) A treatable new cause of chorea: beta-ketothiolase deficiency. Mov Disord 28(8):1054–1056PubMedCrossRefGoogle Scholar
  9. Carpenter K, Bhattacharya K, Ellaway C, Zschocke J, Pitt J (2010) Improved sensitivity for HMG CoA synthase detection using key markers on organic acid screen. J Inherit Metab Dis 33:S62Google Scholar
  10. Cornblath M, Gingell RL, Fleming GA, Tildon JT, Leffler AT, Wapnir RA (1971) A new syndrome of ketoacidosis in infancy. J Pediatr 79(3):413–418PubMedCrossRefGoogle Scholar
  11. Cotter DG, d’Avignon DA, Wentz AE, Weber ML, Crawford PA (2011) Obligate role for ketone body oxidation in neonatal metabolic homeostasis. J Biol Chem 286(9):6902–6910PubMedCentralPubMedCrossRefGoogle Scholar
  12. Cotter DG, Schugar RC, Wentz AE, d’Avignon DA, Crawford PA (2013) Successful adaptation to ketosis by mice with tissue-specific deficiency of ketone body oxidation. Am J Physiol Endocrinol Metab 304(4):E363–E374PubMedCentralPubMedCrossRefGoogle Scholar
  13. Daum RS, Lamm PH, Mamer OA, Scriver CR (1971) A “new” disorder of isoleucine catabolism. Lancet 2(7737):1289–1290PubMedCrossRefGoogle Scholar
  14. Daum RS, Scriver CR, Mamer OA, Delvin E, Lamm P, Goldman H (1973) An inherited disorder of isoleucine catabolism causing accumulation of alpha-methylacetoacetate and alpha-methyl-beta -hydroxybutyrate, and intermittent metabolic acidosis. Pediatr Res 7(3):149–160PubMedCrossRefGoogle Scholar
  15. Eckert R (1988) Chapter 16 Animal energetics and temperature relations. In Animal physiology Mechanism and adaptations (3rd edn). Freeman, New York, pp 555–605Google Scholar
  16. Falk RE, Cederbaum SD, Blass JP, Gibson GE, Kark RA, Carrel RE (1976) Ketonic diet in the management of pyruvate dehydrogenase deficiency. Pediatrics 58(5):713–721PubMedGoogle Scholar
  17. Faull K, Bolton P, Halpern B et al (1976a) Letter: patient with defect in leucine metabolism. N Engl J Med 294(18):1013PubMedGoogle Scholar
  18. Faull KF, Bolton PD, Halpern B, Hammond J, Danks DM (1976b) The urinary organic acid profile associated with 3-hydroxy-3-methylglutaric aciduria. Clin Chim Acta 73(3):553–559PubMedCrossRefGoogle Scholar
  19. Fukao T, Boneh A, Aoki Y, Kondo N (2008) A novel single-base substitution (c.1124A>G) that activates a 5-base upstream cryptic splice donor site within exon 11 in the human mitochondrial acetoacetyl-CoA thiolase gene. Mol Genet Metab 94(4):417–421PubMedCrossRefGoogle Scholar
  20. Fukao T, Horikawa R, Naiki Y et al (2010a) A novel mutation (c.951C>T) in an exonic splicing enhancer results in exon 10 skipping in the human mitochondrial acetoacetyl-CoA thiolase gene. Mol Genet Metab 100(4):339–344PubMedCrossRefGoogle Scholar
  21. Fukao T, Ishii T, Amano N et al (2010b) A neonatal-onset succinyl-CoA:3-ketoacid CoA transferase (SCOT)-deficient patient with T435N and c.658-666dupAACGTGATT p.N220_I222dup mutations in the OXCT1 gene. J Inherit Metab Dis Suppl 3:S307–S313CrossRefGoogle Scholar
  22. Fukao T, Kursula P, Owen EP, Kondo N (2007a) Identification and characterization of a temperature-sensitive R268H mutation in the human succinyl-CoA:3-ketoacid CoA transferase (SCOT) gene. Mol Genet Metab 92(3):216–221PubMedCrossRefGoogle Scholar
  23. Fukao T, Lopaschuk GD, Mitchell GA (2004a) Pathways and control of ketone body metabolism: on the fringe of lipid biochemistry. Prostaglandins Leukot Essent Fat Acids 70(3):243–251CrossRefGoogle Scholar
  24. Fukao T, Maruyama S, Ohura T et al (2012) Three Japanese Patients with beta-ketothiolase deficiency who share a mutation, c.431A>C (H144P) in ACAT1: subtle abnormality in urinary organic Acid analysis and blood acylcarnitine analysis using tandem mass spectrometry. JIMD Rep 3:107–115PubMedCentralPubMedCrossRefGoogle Scholar
  25. Fukao T, Matsuo N, Zhang GX et al (2003a) Single base substitutions at the initiator codon in the mitochondrial acetoacetyl-CoA thiolase (ACAT1/T2) gene result in production of varying amounts of wild-type T2 polypeptide. Hum Mutat 21(6):587–592PubMedCrossRefGoogle Scholar
  26. Fukao T, Mitchell GA, Song XQ et al (2000) Succinyl-CoA:3-ketoacid CoA transferase (SCOT): cloning of the human SCOT gene, tertiary structural modeling of the human SCOT monomer, and characterization of three pathogenic mutations. Genomics 68(2):144–151PubMedCrossRefGoogle Scholar
  27. Fukao T, Nakamura H, Nakamura K et al (2002) Characterization of six mutations in five Spanish patients with mitochondrial acetoacetyl-CoA thiolase deficiency: effects of amino acid substitutions on tertiary structure. Mol Genet Metab 75(3):235–243PubMedCrossRefGoogle Scholar
  28. Fukao T, Nakamura H, Song XQ et al (1998) Characterization of N93S, I312T, and A333P missense mutations in two Japanese families with mitochondrial acetoacetyl-CoA thiolase deficiency. Hum Mutat 12(4):245–254PubMedCrossRefGoogle Scholar
  29. Fukao T, Nguyen HT, Nguyen NT et al (2010c) A common mutation, R208X, identified in Vietnamese patients with mitochondrial acetoacetyl-CoA thiolase (T2) deficiency. Mol Genet Metab 100(1):37–41PubMedCrossRefGoogle Scholar
  30. Fukao T, Sakurai S, Rolland MO et al (2006) A 6-bp deletion at the splice donor site of the first intron resulted in aberrant splicing using a cryptic splice site within exon 1 in a patient with succinyl-CoA: 3-Ketoacid CoA transferase (SCOT) deficiency. Mol Genet Metab 89(3):280–282PubMedCrossRefGoogle Scholar
  31. Fukao T, Sass JO, Kursula P et al (2011) Clinical and molecular characterization of five patients with succinyl-CoA:3-ketoacid CoA transferase (SCOT) deficiency. Biochim Biophys Acta 1812(5):619–624PubMedCrossRefGoogle Scholar
  32. Fukao T, Scriver CR, Kondo N (2001) The clinical phenotype and outcome of mitochondrial acetoacetyl-CoA thiolase deficiency (beta-ketothiolase or T2 deficiency) in 26 enzymatically proved and mutation-defined patients. Mol Genet Metab 72(2):109–114PubMedCrossRefGoogle Scholar
  33. Fukao T, Shintaku H, Kusubae R et al (2004b) Patients homozygous for the T435N mutation of succinyl-CoA:3-ketoacid CoA transferase (SCOT) do not show permanent ketosis. Pediatr Res 56(6):858–863PubMedCrossRefGoogle Scholar
  34. Fukao T, Song XQ, Watanabe H et al (1996) Prenatal diagnosis of succinyl-coenzyme A:3-ketoacid coenzyme A transferase deficiency. Prenat Diagn 16(5):471–474PubMedCrossRefGoogle Scholar
  35. Fukao T, Zhang G, Aoki Y et al (2007b) Identification of Alu-mediated, large deletion-spanning introns 19–26 in PHKA2 in a patient with X-linked liver glycogenosis (hepatic phosphorylase kinase deficiency). Mol Genet Metab 92(1–2):179–182PubMedCrossRefGoogle Scholar
  36. Fukao T, Zhang GX, Sakura N et al (2003b) The mitochondrial acetoacetyl-CoA thiolase (T2) deficiency in Japanese patients: urinary organic acid and blood acylcarnitine profiles under stable conditions have subtle abnormalities in T2-deficient patients with some residual T2 activity. J Inherit Metab Dis 26(5):423–431PubMedCrossRefGoogle Scholar
  37. Hogg S, Pierre G, Buck J, Thalange N, Champion M, Calvin J (2012) 4-Hyroxy-6-methyl-2-pyrone and ketonuria in HMG-CoA synthase deficiency. J Inherit Metab Dis 35:S60Google Scholar
  38. Holzmann J, Frank P, Loffler E, Bennett KL, Gerner C, Rossmanith W (2008) RNase P without RNA: identification and functional reconstitution of the human mitochondrial tRNA processing enzyme. Cell 135(3):462–474PubMedCrossRefGoogle Scholar
  39. Kassovska-Bratinova S, Fukao T, Song XQ et al (1996) Succinyl CoA: 3-oxoacid CoA transferase (SCOT): human cDNA cloning, human chromosomal mapping to 5p13, and mutation detection in a SCOT-deficient patient. Am J Hum Genet 59(3):519–528PubMedCentralPubMedGoogle Scholar
  40. Klepper J, Leiendecker B, Bredahl R et al (2002) Introduction of a ketogenic diet in young infants. J Inherit Metab Dis 25(6):449–460PubMedCrossRefGoogle Scholar
  41. Klepper J, Voit T (2002) Facilitated glucose transporter protein type 1 (GLUT1) deficiency syndrome: impaired glucose transport into brain– a review. Eur J Pediatr 161(6):295–304PubMedCrossRefGoogle Scholar
  42. Langendonk JG, Roos JC, Angus L et al (2012) A series of pregnancies in women with inherited metabolic disease. J Inherit Metab Dis 35(3):419–424PubMedCrossRefGoogle Scholar
  43. Leung AA, Chan AK, Ezekowitz JA, Leung AK (2009) A Case of Dilated Cardiomyopathy Associated with 3-Hydroxy-3-Methylglutaryl-Coenzyme A (HMG CoA) Lyase Deficiency. Case Rep Med 2009:183125PubMedCentralPubMedGoogle Scholar
  44. Longo N, Fukao T, Singh R et al (2004) Succinyl-CoA:3-ketoacid transferase (SCOT) deficiency in a new patient homozygous for an R217X mutation. J Inherit Metab Dis 27(5):691–692PubMedCrossRefGoogle Scholar
  45. Loughrey CM, Cundick J, Olpin S, Manning N, Cardy D, Zschocke J (2013) Poor outcome in 3-hydroxy 3-methylglutaryl-CoA (HMG-CoA) synthase deficiency. J Inherit Metab Dis 36(Suppl 2):S197Google Scholar
  46. Merron S, Akhtar R (2009) Management and communication problems in a patient with succinyl-CoA transferase deficiency in pregnancy and labour. Int J Obstet Anesth 18(3):280–283PubMedCrossRefGoogle Scholar
  47. Middleton B (1973) The oxoacyl-coenzyme A thiolases of animal tissues. Biochem J 132(4):717–730PubMedCentralPubMedGoogle Scholar
  48. Middleton B, Bartlett K (1983) The synthesis and characterisation of 2-methylacetoacetyl coenzyme A and its use in the identification of the site of the defect in 2-methylacetoacetic and 2-methyl-3-hydroxybutyric aciduria. Clin Chim Acta 128(2–3):291–305PubMedCrossRefGoogle Scholar
  49. Mitchell GA, Fukao T (2001) Inborn errors of ketone body metabolism. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic & molecular basis of inherited disease. McGraw-Hill, New York, pp 2327–2356Google Scholar
  50. Morris AA (2005) Cerebral ketone body metabolism. J Inherit Metab Dis 28(2):109–121PubMedCrossRefGoogle Scholar
  51. Morris AA, Lascelles CV, Olpin SE, Lake BD, Leonard JV, Quant PA (1998) Hepatic mitochondrial 3-hydroxy-3-methylglutaryl-coenzyme a synthase deficiency. Pediatr Res 44(3):392–396PubMedCrossRefGoogle Scholar
  52. Mrazova L, Fukao T, Halovd K et al (2005) Two novel mutations in mitochondrial acetoacetyl-CoA thiolase deficiency. J Inherit Metab Dis 28(2):235–236PubMedCrossRefGoogle Scholar
  53. Muroi J, Yorifuji T, Uematsu A, Nakahata T (2000a) Cerebral infarction and pancreatitis: possible complications of patients with 3-hydroxy-3-methylglutaryl-CoA lyase deficiency. J Inherit Metab Dis 23(6):636–637PubMedCrossRefGoogle Scholar
  54. Muroi J, Yorifuji T, Uematsu A et al (2000b) Molecular and clinical analysis of Japanese patients with 3-hydroxy-3-methylglutaryl CoA lyase (HL) deficiency. Hum Genet 107(4):320–326PubMedCrossRefGoogle Scholar
  55. Nakamura K, Fukao T, Perez-Cerda C et al (2001) A novel single-base substitution (380C>T) that activates a 5-base downstream cryptic splice-acceptor site within exon 5 in almost all transcripts in the human mitochondrial acetoacetyl-CoA thiolase gene. Mol Genet Metab 72(2):115–121PubMedCrossRefGoogle Scholar
  56. Neal EG, Chaffe H, Schwartz RH et al (2008) The ketogenic diet for the treatment of childhood epilepsy: a randomised controlled trial. Lancet Neurol 7(6):500–506PubMedCrossRefGoogle Scholar
  57. Niezen-Koning KE, Wanders RJ, Ruiter JP et al (1997) Succinyl-CoA:acetoacetate transferase deficiency: identification of a new patient with a neonatal onset and review of the literature. Eur J Pediatr 156(11):870–873PubMedCrossRefGoogle Scholar
  58. Perez-Cerda C, Merinero B, Sanz P et al (1992) A new case of succinyl-CoA: acetoacetate transferase deficiency. J Inherit Metab Dis 15(3):371–373PubMedCrossRefGoogle Scholar
  59. Pitt J, Peters H, Mishra A et al (2009) Mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase deficiency may be recognized by increased concentration of 4-hydroxy-6-methyl-2-pyrone in urinary organic acid analysis. Mol Genet Metab 98(1–2):51Google Scholar
  60. Plecko B, Stoeckler-Ipsiroglu S, Schober E et al (2002) Oral beta-hydroxybutyrate supplementation in two patients with hyperinsulinemic hypoglycemia: monitoring of beta-hydroxybutyrate levels in blood and cerebrospinal fluid, and in the brain by in vivo magnetic resonance spectroscopy. Pediatr Res 52(2):301–306PubMedGoogle Scholar
  61. Pretorius CJ, Loy Son GG, Bonnici F, Harley EH (1996) Two siblings with episodic ketoacidosis and decreased activity of succinyl-CoA:3-ketoacid CoA-transferase in cultured fibroblasts. J Inherit Metab Dis 19(3):296–300PubMedCrossRefGoogle Scholar
  62. Ramos M, Menao S, Arnedo M et al (2013) New case of mitochondrial HMG-CoA synthase deficiency. Functional analysis of eight mutations. Eur J Med Genet 56(8):411–415PubMedCrossRefGoogle Scholar
  63. Rauschenberger K, Scholer K, Sass JO et al (2010) A non-enzymatic function of 17beta-hydroxysteroid dehydrogenase type 10 is required for mitochondrial integrity and cell survival. EMBO Mol Med 2(2):51–62PubMedCentralPubMedCrossRefGoogle Scholar
  64. Reimao S, Morgado C, Almeida IT, Silva M, Real HC, Campos J (2009) 3-Hydroxy-3-methylglutaryl-coenzyme A lyase deficiency: Initial presentation in a young adult. J Inherit Metab Dis 32(Suppl 1):S49–S52PubMedCrossRefGoogle Scholar
  65. Rolland MO, Guffon N, Mandon G, Divry P (1998) Succinyl-CoA:acetoacetate transferase deficiency. Identification of a new case; prenatal exclusion in three further pregnancies. J Inherit Metab Dis 21(6):687–688PubMedCrossRefGoogle Scholar
  66. Sakazaki H, Hirayama K, Murakami S et al (1995) A new Japanese case of succinyl-CoA: 3-ketoacid CoA-transferase deficiency. J Inherit Metab Dis 18(3):323–325PubMedCrossRefGoogle Scholar
  67. Sakurai S, Fukao T, Haapalainen AM et al (2007) Kinetic and expression analyses of seven novel mutations in mitochondrial acetoacetyl-CoA thiolase (T2): identification of a Km mutant and an analysis of the mutational sites in the structure. Mol Genet Metab 90(4):370–378PubMedCrossRefGoogle Scholar
  68. Sass JO (2012) Inborn errors of ketogenesis and ketone body utilization. J Inherit Metab Dis 35(1):23–28PubMedCrossRefGoogle Scholar
  69. Sass JO, Kühlwein E, Klauwer D, Rohrbach M, Baumgartner MR (2013) Hemodiafiltration in mitochondrial 3-hydroxy-3-methylglutaryl coenzyme A synthase (HMG-CoA synthase) deficiency. J Inherit Metab Dis 36(Suppl 2):S189Google Scholar
  70. Sarafoglou K, Matern D, Redlinger-Grosse K et al (2011) Siblings with mitochondrial acetoacetyl-CoA thiolase deficiency not identified by newborn screening. Pediatrics 128(1):e246–e250PubMedCrossRefGoogle Scholar
  71. Sewell AC, Herwig J, Wiegratz I et al (1998) Mitochondrial acetoacetyl-CoA thiolase (beta-ketothiolase) deficiency and pregnancy. J Inherit Metab Dis 21(4):441–442PubMedCrossRefGoogle Scholar
  72. Shafqat N, Kavanagh KL, Sass JO et al (2013) A structural mapping of mutations causing succinyl-CoA: 3-ketoacid CoA transferase (SCOT) deficiency. J Inherit Metab Dis 36(6):983–987PubMedCentralPubMedCrossRefGoogle Scholar
  73. Snyderman SE, Sansaricq C, Middleton B (1998) Succinyl-CoA:3-ketoacid CoA-transferase deficiency. Pediatrics 101(4 Pt 1):709–711PubMedCrossRefGoogle Scholar
  74. Song XQ, Fukao T, Watanabe H et al (1998) Succinyl-CoA:3-ketoacid CoA transferase (SCOT) deficiency: two pathogenic mutations, V133E and C456F, in Japanese siblings. Hum Mutat 12(2):83–88PubMedCrossRefGoogle Scholar
  75. Thompson GN, Hsu BY, Pitt JJ, Treacy E, Stanley CA (1997) Fasting hypoketotic coma in a child with deficiency of mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase. N Engl J Med 337(17):1203–1207PubMedCrossRefGoogle Scholar
  76. Thummler S, Dupont D, Acquaviva C, Fukao T, de Ricaud D (2010) Different clinical presentation in siblings with mitochondrial acetoacetyl-CoA thiolase deficiency and identification of two novel mutations. Tohoku J Exp Med 220(1):27–31PubMedCrossRefGoogle Scholar
  77. Tildon JT, Cornblath M (1972) Succinyl-CoA: 3-ketoacid CoA-transferase deficiency. A cause for ketoacidosis in infancy. J Clin Invest 51(3):493–498PubMedCentralPubMedCrossRefGoogle Scholar
  78. Van Hove JL, Grunewald S, Jaeken J et al (2003) D, L-3-hydroxybutyrate treatment of multiple acyl-CoA dehydrogenase deficiency (MADD). Lancet 361(9367):1433–1435PubMedCrossRefGoogle Scholar
  79. Wolf NI, Rahman S, Clayton PT, Zschocke J (2003) Mitochondrial HMG-CoA synthase deficiency: identification of two further patients carrying two novel mutations. Eur J Pediatr 162(4):279–280PubMedGoogle Scholar
  80. Yamada K, Fukao T, Zhang G et al (2007) Single-base substitution at the last nucleotide of exon 6 (c.671G>A), resulting in the skipping of exon 6, and exons 6 and 7 in human succinyl-CoA:3-ketoacid CoA transferase (SCOT) gene. Mol Genet Metab 90(3):291–297PubMedCrossRefGoogle Scholar
  81. Yamaguchi S, Orii T, Sakura N, Miyazawa S, Hashimoto T (1988) Defect in biosynthesis of mitochondrial acetoacetyl-coenzyme A thiolase in cultured fibroblasts from a boy with 3-ketothiolase deficiency. J Clin Invest 81(3):813–817PubMedCentralPubMedCrossRefGoogle Scholar
  82. Yang SY, He XY, Olpin SE et al (2009) Mental retardation linked to mutations in the HSD17B10 gene interfering with neurosteroid and isoleucine metabolism. Proc Natl Acad Sci U S A 106(35):14820–14824PubMedCentralPubMedCrossRefGoogle Scholar
  83. Zhang G, Fukao T, Sakurai S, Yamada K, Gibson MK, Kondo N (2006) Identification of Alu-mediated, large deletion-spanning exons 2–4 in a patient with mitochondrial acetoacetyl-CoA thiolase deficiency. Mol Genet Metab 89(3):222–226PubMedCrossRefGoogle Scholar
  84. Zhang GX, Fukao T, Rolland MO et al (2004) Mitochondrial acetoacetyl-CoA thiolase (T2) deficiency: T2-deficient patients with “mild” mutation(s) were previously misinterpreted as normal by the coupled assay with tiglyl-CoA. Pediatr Res 56(1):60–64PubMedCrossRefGoogle Scholar
  85. Zschocke J (2012) HSD10 disease: clinical consequences of mutations in the HSD17B10 gene. J Inherit Metab Dis 35(1):81–89PubMedCrossRefGoogle Scholar
  86. Zschocke J, Penzien JM, Bielen R et al (2002) The diagnosis of mitochondrial HMG-CoA synthase deficiency. J Pediatr 140(6):778–780PubMedCrossRefGoogle Scholar
  87. Zschocke J, Ruiter JP, Brand J et al (2000) Progressive infantile neurodegeneration caused by 2-methyl-3-hydroxybutyryl-CoA dehydrogenase deficiency: a novel inborn error of branched-chain fatty acid and isoleucine metabolism. Pediatr Res 48(6):852–855PubMedCrossRefGoogle Scholar

Copyright information

© SSIEM and Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Toshiyuki Fukao
    • 1
    • 2
  • Grant Mitchell
    • 3
  • Jörn Oliver Sass
    • 4
  • Tomohiro Hori
    • 1
  • Kenji Orii
    • 1
  • Yuka Aoyama
    • 2
  1. 1.Department of PediatricsGraduate School of Medicine, Gifu UniversityGifuJapan
  2. 2.Medical Information Sciences DivisionUnited Graduate School of Drug Discovery and Medical Information Sciences, Gifu UniversityGifuJapan
  3. 3.Division of Medical Genetics, Department of PediatricsCHU Sainte-Justine and Université de MontréalMontrealCanada
  4. 4.Division of Clinical Chemistry & BiochemistryUniversity of Zurich Children’s HospitalZurichSwitzerland

Personalised recommendations