Skip to main content
Log in

Inborn errors of ketogenesis and ketone body utilization

  • Branched-Chain Amino Acids
  • Published:
Journal of Inherited Metabolic Disease

Abstract

Ketone bodies acetoacetate and 3-hydroxy-n-butyric acid are metabolites derived from fatty acids and ketogenic amino acids such as leucine. They are mainly produced in the liver via reactions catalyzed by the ketogenic enzymes mitochondrial 3-hydroxy-3-methylglutary-coenzyme A synthase and 3-hydroxy-3-methylglutary-coenzyme A lyase. After prolonged starvation, ketone bodies can provide up to two-thirds of the brain’s energy requirements. The rate-limiting enzyme of ketone body utilization (ketolysis) is succinyl-coenzyme A:3-oxoacid coenzyme A transferase. The subsequent step of ketolysis is catalyzed by 2-methylactoacetyl-coenzyme A thiolase, which is also involved in isoleucine catabolism. Inborn errors of metabolism affecting those four enzymes are presented and discussed in the context of differential diagnoses. While disorders of ketogenesis can present with hypoketotic hypoglycemia, inborn errors of ketolysis are characterized by metabolic decompensations with ketoacidosis. If those diseases are considered early and appropriate treatment is initiated without delay, patients with inborn errors of ketone body metabolism often have a good clinical outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aledo R, Zschocke J, Pie J et al (2001) Genetic basis of mitochondrial HMG-CoA synthase deficiency. Hum Genet 109:19–23

    Article  PubMed  CAS  Google Scholar 

  • Aledo R, Mir C, Dalton RN, Turner C, Pié J, Hegardt FG, Casals N, Champion MP (2006) Refining the diagnosis of mitochondrial HMG-CoA synthase deficiency. J Inherit Metab Dis 29:207–211

    Article  PubMed  CAS  Google Scholar 

  • Bischof F, Nagele T, Wanders RJ, Trefz FK, Melms A (2004) 3-hydroxy-3-methylglutaryl-CoA lyase deficiency in an adult with leukoencephalopathy. Ann Neurol 56:727–730

    Article  PubMed  Google Scholar 

  • Chalmers RA, Roe CR, Stacey TE, Hoppel CL (1984) Urinary excretion of l-carnitine and acylcarnitines by patients with disorders of organic acid metabolism: evidence for secondary insufficiency of l-carnitine. Pediatr Res 18:1325–1328

    Article  PubMed  CAS  Google Scholar 

  • Dasouki M, Buchanan D, Mercer N, Gibson KM, Thoene J (1987) 3-Hydroxy-3-methylglutaric aciduria: response to carnitine therapy and fat and leucine restriction. J Inherit Metab Dis 10:142–146

    Article  PubMed  CAS  Google Scholar 

  • Daum RS, Lamm PH, Mamer OA, Scriver CR (1971) A "new" disorder of isoleucine catabolism. Lancet 2:1289–1290

    Article  PubMed  CAS  Google Scholar 

  • Faull K, Bolton P, Halpern B et al (1976) Patient with defect in leucine catabolism. N Engl J Med 294:1013

    PubMed  CAS  Google Scholar 

  • Fukao T, Yamaguchi S, Kano M et al (1990) Molecular cloning and sequence of the complementary DNA encoding human mitochondrial acetoacetyl-coenzyme A thiolase and study of the variant enzymes in cultured fibroblasts from patients with 3-ketothiolase deficiency. J Clin Invest 86:2086–2092

    Article  PubMed  CAS  Google Scholar 

  • Fukao T, Mitchell GA, Song XQ et al (2000) Succinyl-CoA:3-ketoacid CoA transferase (SCOT): cloning of the human SCOT gene, tertiary structural modeling of the human SCOT monomer, and characterization of three pathogenic mutations. Genomics 68:144–151

    Article  PubMed  CAS  Google Scholar 

  • Fukao T, Scriver CR, Kondo N (2001) The clinical phenotype and outcome of mitochondrial acetoacetyl-CoA thiolase deficiency (beta-ketothiolase or T2 deficiency) in 26 enzymatically proved and mutation-defined patients. Mol Genet Metab 72:109–114

    Article  PubMed  CAS  Google Scholar 

  • Fukao T, Zhang GX, Sakura N et al (2003) The mitochondrial acetoacetyl-CoA thiolase (T2) deficiency in Japanese patients: urinary organic acid and blood acylcarnitine profiles under stable conditions have subtle abnormalities in T2-deficient patients with some residual T2 activity. J Inherit Metab Dis 26:423–431

    Article  PubMed  CAS  Google Scholar 

  • Fukao T, Shintaku H, Kusubae R, Zhang X-Q, Nakamura K, Kondo M, Kondo N (2004) Patients homozygous for the T435N mutation of succinyl-CoA:3-ketoacid CoA transferase (SCOT) do not show permanent ketosis. Pediatr Res 56:858–863

    Article  PubMed  CAS  Google Scholar 

  • Fukao T, Nguyen HT, Nguyen NT et al (2010) A common mutation, R208X, identified in Vietnamese patients with mitochondrial acetoacetyl-CoA thiolase (T2) deficiency. Mol Genet Metab 100:37–41

    Article  PubMed  CAS  Google Scholar 

  • Fukao T, Sass JO, Kursula P et al (2011) Clinical and molecular characterization of five patients with succinyl-CoA:3-ketoacid CoA transferase (SCOT) deficiency. Biochim Biophys Acta 1812:619–624

    PubMed  CAS  Google Scholar 

  • Galloway PJ, Robinson PH (2002) Ketoacidosis—a trap for the unwary? Arch Dis Child 87:429

    Article  Google Scholar 

  • Gibson KM, Cassidy SB, Seaver LH et al (1994) Fatal cardiomyopathy associated with 3-hydroxy-3-methylglutaryl-coA lyase deficiency. J Inherit Metab Dis 17:291–294

    Article  PubMed  CAS  Google Scholar 

  • Gordon K, Riding M, Camfield P, Bawden H, Ludman M, Bagnell P (1994) CT and MR of 3-hydroxy-3-methylglutaryl-coenzyme A lyase deficiency. AJNR Am J Neuroradiol 15:1474–1476

    PubMed  CAS  Google Scholar 

  • Haymond MW, Pagliara AS (1983) Ketotic hyperglycaemia. Clin Endocrinol Metab 12:447–462

    Article  PubMed  CAS  Google Scholar 

  • Kassovska-Bratinova S, Fukao T, Song XQ et al (1996) Succinyl CoA:3-oxoacid CoA transferase (SCOT): human cDNA cloning, human chromosomal mapping to 5p13, and mutation detection in a SCOT-deficient patient. Am J Hum Genet 59:519–528

    PubMed  CAS  Google Scholar 

  • Kouremenos KA, Pitt J, Marriott PJ (2010) Metabolic profiling of infant urine using comprehensive two-dimensional gas chromatography: application to the diagnosis of organic acidurias and biomarker discovery. J Chromatogr A 1217:104–111

    Article  PubMed  CAS  Google Scholar 

  • Laffel L (1999) Ketone bodies: a review of physiology, pathophysiology and application of monitoring to diabetes. Diabetes Metab Res Rev 15:412–426

    Article  PubMed  CAS  Google Scholar 

  • Marks AR, McIntyre JO, Duncan TM, Erdjument-Bromage H, Tempst P, Fleischer S (1992) Molecular cloning and characterization of (R)-3-hydroxybutyrate dehydrogenase from human heart. J Biol Chem 267:15459–15463

    PubMed  CAS  Google Scholar 

  • Matern D (2008) Acylcarnitines, including in vitro loading tests. In: Blau N, Duran M, Gibson KM (eds) Laboratory guide to the methods in biochemical genetics. Springer, Berlin, pp 171–206

    Chapter  Google Scholar 

  • Mitchell GA, Fukao T (2001) Inborn errors of ketone body catabolism. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) Metabolic and molecular bases of inherited disease, 8th ed. McGraw-Hill, New York, pp 2327–2356

    Google Scholar 

  • Mitchell GA, Kassovska-Bratinova S, Boukaftane Y, Robert MF, Wang SP, Ashmarina L, Lambert M, Lapierre P, Potier E (1995) Medical aspects of ketone body metabolism. Clin Invest Med 18:193–216

    PubMed  CAS  Google Scholar 

  • Ofman R, Ruiter JP, Feenstra M, Duran M, Poll-The BT, Zschocke J, Ensenauer R, Lehnert W, Sass JO, Sperl W, Wanders RJ (2003) 2-Methyl-3-hydroxybutyryl-CoA dehydrogenase deficiency is caused by mutations in the HADH2 gene. Am J Hum Genet 72:1300–1307

    Article  PubMed  CAS  Google Scholar 

  • Orho M, Bosshard NU, Buist NR, Gitzelmann R, Aynsley-Green A, Blümel P, Gannon MC, Nuttall FQ, Groop LC (1998) Mutations in the liver glycogen synthase gene in children with hypoglycemia due to glycogen storage disease type 0. J Clin Invest 102:507–515

    Article  PubMed  CAS  Google Scholar 

  • Ozand PT, al Aqeel A, Gascon G, Brismar J, Thomas E, Gleispach H (1991) 3-Hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) lyase deficiency in Saudi Arabia. J Inherit Metab Dis 14:174–188

    Article  PubMed  CAS  Google Scholar 

  • Pié J, López-Viñas E, Puisac B, Menao S, Pié A, Casale C, Ramos FJ, Hegardt FG, Gómez-Puertas P, Casals N (2007) Molecular genetics of HMG-coA lyase deficiency. Mol Genet Metab 92:198–209

    Article  PubMed  Google Scholar 

  • Pierre K, Pellerin L (2005) Monocarboxylate transporters in the central nervous system: distribution, regulation and function. J Neurochem 94:1–14

    Article  PubMed  CAS  Google Scholar 

  • Schober E, Rami B, Waldhoer T (2010) Diabetic ketoacidosis at diagnosis in Austrian children in 1989–2008: a population-based analysis. Diabetologia 53:1057–1061

    Article  PubMed  CAS  Google Scholar 

  • Singh I, Srivastava MC (1968) Hyperglycemia, keto-acidosis and coma in a nondiabetic hyperthyroid patient. Metabolism 17:893–895

    Article  PubMed  CAS  Google Scholar 

  • Thompson GN, Hsu BY, Pitt JJ, Treacy E, Stanley CA (1997) Fasting hypoketotic coma in a child with deficiency of mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase. N Engl J Med 337:1203–1207

    Article  PubMed  CAS  Google Scholar 

  • Tildon JT, Cornblath M (1972) Succinyl-CoA:3-ketoacid CoA transferase deficiency: a cause for ketoacidosis in infancy. J Clin Invest 51:493–498

    Article  PubMed  CAS  Google Scholar 

  • Treacy E, Danks DM (1994) Ketotic hypoglycaemia presenting as a life-threatening situation in a child with amelia. Eur J Pediatr 153:53

    Article  PubMed  CAS  Google Scholar 

  • van der Knaap MS, Bakker HD, Valk J (1998) MR imaging and proton spectroscopy in 3-hydroxy-3-methylglutaryl coenzyme A lyase deficiency. AJNR Am J Neuroradiol 19:378–382

    PubMed  Google Scholar 

  • VanItallie TB, Nufert TH (2003) Ketones: metabolism's ugly duckling. Nutr Rev 61:327–341

    Article  PubMed  Google Scholar 

  • Weinstein DA, Correia CE, Saunders AC, Wolfsdorf JI (2006) Hepatic glycogen synthase deficiency: an infrequently recognized cause of ketotic hypoglycemia. Mol Genet Metab 87:284–288

    Article  PubMed  CAS  Google Scholar 

  • Wraige E, Champion MP, Turner C, Dalton RN (2002) Fat oxidation defect presenting with overwhelming ketonuria. Arch Dis Child 87:428–429

    Article  PubMed  CAS  Google Scholar 

  • Zijlmans WC, van Kempen AA, Serlie MJ, Sauerwein HP (2009) Glucose metabolism in children: influence of age, fasting, and infectious diseases. Metabolism 58:1356–1365

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author is grateful to Professor Toshiyuki Fukao (Gifu, Japan) for his introduction into the field of inborn errors of ketone body utilization, long-time collaboration, and critical reading of the manuscript. Dr. Sarah Grünert (Freiburg, Germany) is thanked for valuable suggestions as are the members of the Freiburg Laboratory for Clinical Biochemistry and Metabolism for continuous diagnostic and research effort in the area of ketone body metabolism and beyond.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörn Oliver Sass.

Additional information

Communicated by: Matthias Baumgartner

Competing interest: None declared.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sass, J.O. Inborn errors of ketogenesis and ketone body utilization. J Inherit Metab Dis 35, 23–28 (2012). https://doi.org/10.1007/s10545-011-9324-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-011-9324-6

Keywords

Navigation