Skip to main content
Log in

Should transcobalamin deficiency be treated aggressively?

  • Original Article
  • Published:
Journal of Inherited Metabolic Disease

Abstract

Transcobalamin (transcobalamin II, TC) transports plasma vitamin B12 (cobalamin, Cbl) into cells. TC deficiency is a rare autosomal recessive disorder causing intracellular Cbl depletion, which in turn causes megaloblastic bone marrow failure, accumulation of homocysteine and methylmalonic acid, and methionine depletion. The clinical presentation reflects intracellular Cbl defects, with early-onset failure to thrive with gastrointestinal symptoms, pancytopenia, and megaloblastic anemia, sometimes followed by neurological complications. We report the clinical, biological, and molecular findings and the outcome in five TC-deficient patients. The three treated early had an initial favorable outcome, whereas the two treated inadequately had late-onset severe neuro-ophthalmological impairment. Even if the natural course of the disease over time might also result in late-onset symptoms in the aggressively treated patients, these data emphasize that TC deficiency is a severe disorder requiring early detection and probably long-term aggressive therapy. Mutation analysis revealed six unreported mutations in the TCN2 gene. In silico structural analysis showed that these mutations disrupt the Cbl-TC interaction domain and/or the putative transcobalamin–transcobalamin receptor interaction domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Bottiglieri T (2002) S-Adenosyl-L-methionine (SAMe): from the bench to the bedside–molecular basis of a pleiotrophic molecule. Am J Clin Nutr 76:1151S–1157S

    CAS  PubMed  Google Scholar 

  • Castro R, Rivera I, Blom HJ, Jakobs C, Tavares de Almeida I (2006) Homocysteine metabolism, hyperhomocysteinaemia and vascular disease: an overview. J Inherit Metab Dis 29:3–20

    Article  CAS  PubMed  Google Scholar 

  • Delgado-Reyes CV, Wallig MA, Garrow TA (2001) Immunohistochemical detection of betaine-homocysteine S-methyltransferase in human, pig, and rat liver and kidney. Arch Biochem Biophys 393:184–186

    Article  CAS  PubMed  Google Scholar 

  • Dharmasena A, Calcagni A, Kerr AR (2008) Retinopathy in inherited transcobalamin II deficiency. Arch Ophthalmol 126:141–142

    Article  PubMed  Google Scholar 

  • Gerth C, Morel CF, Feigenbaum A, Levin AV (2008) Ocular phenotype in patients with methylmalonic aciduria and homocystinuria, cobalamin C type. J Aapos 12:591–596

    Article  PubMed  Google Scholar 

  • Haberle J, Pauli S, Berning C, Koch HG, Linnebank M (2009) TC II deficiency: avoidance of false-negative molecular genetics by RNA-based investigations. J Hum Genet 54:331–334

    Article  PubMed  CAS  Google Scholar 

  • Hakami N, Neiman PE, Canellos GP, Lazerson J (1971) Neonatal megaloblastic anemia due to inherited transcobalamin II deficiency in two siblings. N Engl J Med 285:1163–1170

    Article  CAS  PubMed  Google Scholar 

  • Hall CA (1992) The neurologic aspects of transcobalamin II deficiency. Br J Haematol 80:117–120

    Article  CAS  PubMed  Google Scholar 

  • Kaikov Y, Wadsworth LD, Hall CA, Rogers PC (1991) Transcobalamin II deficiency: case report and review of the literature. Eur J Pediatr 150:841–843

    Article  CAS  PubMed  Google Scholar 

  • Li N, Rosenblatt DS, Seetharam B (1994a) Nonsense mutations in human transcobalamin II deficiency. Biochem Biophys Res Commun 204:1111–1118

    Article  CAS  PubMed  Google Scholar 

  • Li N, Rosenblatt DS, Kamen BA, Seetharam S, Seetharam B (1994b) Identification of two mutant alleles of transcobalamin II in an affected family. Hum Mol Genet 3:1835–1840

    Article  CAS  PubMed  Google Scholar 

  • Namour F, Helfer AC, Quadros EV et al (2003) Transcobalamin deficiency due to activation of an intra exonic cryptic splice site. Br J Haematol 123:915–920

    Article  CAS  PubMed  Google Scholar 

  • Ogier de Baulny H, Gerard M, Saudubray JM, Zittoun J (1998) Remethylation defects: guidelines for clinical diagnosis and treatment. Eur J Pediatr 157(Suppl 2):S77–S83

    Article  PubMed  Google Scholar 

  • Prasad C, Rosenblatt DS, Corley K, Cairney AE, Rupar CA (2008) Transcobalamin (TC) deficiency—potential cause of bone marrow failure in childhood. J Inherit Metab Dis 10.1007/s10545-008-0864-3

  • Qian L, Quadros EV, Regec A, Zittoun J, Rothenberg SP (2002) Congenital transcobalamin II deficiency due to errors in RNA editing. Blood Cells Mol Dis 28:134–142, discussion 143–135

    Article  PubMed  Google Scholar 

  • Quadros EV (2009) Advances in the understanding of cobalamin assimilation and metabolism. Br J Haematol 148(2):195–204

    Google Scholar 

  • Quadros EV, Nakayama Y, Sequeira JM (2009) The protein and the gene encoding the receptor for the cellular uptake of transcobalamin-bound cobalamin. Blood 113:186–192

    Article  CAS  PubMed  Google Scholar 

  • Ratschmann R, Minkov M, Kis A et al (2009) Transcobalamin II deficiency at birth. Mol Genet Metab 98(3):285–288

    Google Scholar 

  • Regec A, Quadros EV, Platica O, Rothenberg SP (1995) The cloning and characterization of the human transcobalamin II gene. Blood 85:2711–2719

    CAS  PubMed  Google Scholar 

  • Rosenblatt DS, Fenton WA (2001) Inherited disorders of folate and cobalamin transport and metabolism, In: Scriver CR, Beaudet AL, Valle D, Sly WS (eds) Metabolic and molecular bases of inherited disease, 8th ed. McGraw-Hill, New-York, Vol. III, pp 3897–3933

  • Souied EH, Benhamou N, Sterkers M et al (2001) Retinal degeneration associated with congenital transcobalamin II deficiency. Arch Ophthalmol 119:1076–1077

    CAS  PubMed  Google Scholar 

  • Strauss KA, Morton DH, Puffenberger EG et al (2007) Prevention of brain disease from severe 5, 10-methylenetetrahydrofolate reductase deficiency. Mol Genet Metab 91:165–175

    Article  CAS  PubMed  Google Scholar 

  • Surtees R (1998) Demyelination and inborn errors of the single carbon transfer pathway. Eur J Pediatr 157(Suppl 2):S118–S121

    Article  CAS  PubMed  Google Scholar 

  • Whitehead VM (2006) Acquired and inherited disorders of cobalamin and folate in children. Br J Haematol 134:125–136

    Article  CAS  PubMed  Google Scholar 

  • Wuerges J, Garau G, Geremia S, Fedosov SN, Petersen TE, Randaccio L (2006) Structural basis for mammalian vitamin B12 transport by transcobalamin. Proc Natl Acad Sci U S A 103:4386–4391

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. Kevin Collins for his critical review and constructive comments on this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Schiff.

Additional information

Communicated by: Matthias Baumgartner

Competing interests: None declared.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schiff, M., Ogier de Baulny, H., Bard, G. et al. Should transcobalamin deficiency be treated aggressively?. J Inherit Metab Dis 33, 223–229 (2010). https://doi.org/10.1007/s10545-010-9074-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-010-9074-x

Keywords

Navigation