Skip to main content
Log in

Improved management of lysosomal glucosylceramide levels in a mouse model of type 1 Gaucher disease using enzyme and substrate reduction therapy

  • Original Article
  • Published:
Journal of Inherited Metabolic Disease

Abstract

Gaucher disease is caused by a deficiency of the lysosomal enzyme glucocerebrosidase (acid β-glucosidase), with consequent cellular accumulation of glucosylceramide (GL-1). The disease is managed by intravenous administrations of recombinant glucocerebrosidase (imiglucerase), although symptomatic patients with mild to moderate type 1 Gaucher disease for whom enzyme replacement therapy (ERT) is not an option may also be treated by substrate reduction therapy (SRT) with miglustat. To determine whether the sequential use of both ERT and SRT may provide additional benefits, we compared the relative pharmacodynamic efficacies of separate and sequential therapies in a murine model of Gaucher disease (D409V/null). As expected, ERT with recombinant glucocerebrosidase was effective in reducing the burden of GL-1 storage in the liver, spleen, and lung of 3-month-old Gaucher mice. SRT using a novel inhibitor of glucosylceramide synthase (Genz-112638) was also effective, albeit to a lesser degree than ERT. Animals administered recombinant glucocerebrosidase and then Genz-112638 showed the lowest levels of GL-1 in all the visceral organs and a reduced number of Gaucher cells in the liver. This was likely because the additional deployment of SRT following enzyme therapy slowed the rate of reaccumulation of GL-1 in the affected organs. Hence, in patients whose disease has been stabilized by intravenously administered recombinant glucocerebrosidase, orally administered SRT with Genz-112638 could potentially be used as a convenient maintenance therapy. In patients naïve to treatment, ERT followed by SRT could potentially accelerate clearance of the offending substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CNS:

Central nervous system

ERT:

Enzyme replacement therapy

ESI/MS:

Electrospray ionization mass spectrometry

GD:

Gaucher disease

GL-1:

Glucosylceramide

H&E:

Hematoxylin and eosin

HPLC:

High-performance liquid chromatography

NB-DNJ:

N-butyl deoxynojirimycin

SRT:

Substrate reduction therapy

References

  • Aerts JM, Ottenhoff R, Powlson AS et al (2007) Pharmacological inhibition of glucosylceramide synthase enhances insulin sensitivity. Diabetes 56:1341–1349

    Article  CAS  PubMed  Google Scholar 

  • Beutler E, Grabowski GA (2001) Gaucher disease. In: Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular basis of inherited disease (Scriver CR). McGraw-Hill, New York, pp 3635–3668

    Google Scholar 

  • Brady RO, Kanfer JN, Bradley RM, Shapiro D (1966) Demonstration of a deficiency of glucocerebroside-cleaving enzyme in Gaucher’s disease. J Clin Invest 45:1112–1115

    Article  CAS  PubMed  Google Scholar 

  • Charrow J, Andersson HC, Kaplan P et al (2004) Enzyme replacement therapy and monitoring for children with type 1 Gaucher disease: consensus recommendations. J Pediatr 144:112–120

    Article  CAS  PubMed  Google Scholar 

  • Cox TM, Aerts JM, Andria G et al (2003) The role of the iminosugar N-butyldeoxynojirimycin (miglustat) in the management of type 1 (non-neuropathic) Gaucher disease: a position statement. J Inherit Metab Dis 26:513–526

    Article  CAS  PubMed  Google Scholar 

  • de Fost M, Hollack CEM, Groener JEM et al (2006) Superior effects of high-dose enzyme replacement therapy in type 1 Gaucher disease on bone marrow involvement and chitotriosidase levels: a 2-center retrospective analysis. Blood 108:830–835

    Article  PubMed  Google Scholar 

  • Doering T, Holleran WM, Potratz A, Vielhaber G, Elias PM, Suzuki K, Sandhoff K (1999) Sphingolipid activator proteins are required for epidermal permeability barrier formation. J Biol Chem 274:11038–11045

    Article  CAS  PubMed  Google Scholar 

  • Elbein AD, Tropea JE, Mitchell M, Kaushal GP (1990) Kifunensine, a potent inhibitor of the glycoprotein processing mannosidase I. J Biol Chem 265:15599–15605

    CAS  PubMed  Google Scholar 

  • Elstein D, Hollack C, Aerts JM et al (2004) Sustained therapeutic effects of oral miglustat (Zavesca, N-butyldeoxynojirimycin, OGT 918) in type 1 Gaucher disease. J Inherit Metab Dis 27:757–766

    Article  CAS  PubMed  Google Scholar 

  • Elstein D, Dwek A, Attias D et al (2007) Oral maintenance clinical trial with miglustat for type 1 Gaucher disease: switch from or combination with intravenous enzyme replacement. Blood 110:2296–2301

    Article  CAS  PubMed  Google Scholar 

  • Enquist IB, Nilsson E, Ooka A et al (2006) Effective cell and gene therapy in a murine model of Gaucher disease. Proc Natl Acad Sci USA 103:13819–13824

    Article  CAS  PubMed  Google Scholar 

  • Futerman AH, Sussman JL, Horowitz M, Silman I, Zimran A (2004) New directions in the treatment of Gaucher disease. Trends Pharmacol Sci 25:147–151

    Article  CAS  PubMed  Google Scholar 

  • Giraldo P, Latre P, Alfonso P et al (2006) Short-term effect of miglustat in every day clinical use in treatment-naïve or previously treated patients with type 1 Gaucher disease. Hematologica 91:703–706

    CAS  Google Scholar 

  • Grabowski GA, Barton NW, Pastores G et al (1995) Enzyme therapy in Type I Gaucher disease: comparative efficacy of mannose-terminated glucocerebrosidase from natural and recombinant sources. Ann Int Med 122:33–39

    CAS  PubMed  Google Scholar 

  • Grabowski GA, Kacena K, Cole AJ et al (2009) Dose-response relationships for enzyme replacement therapy with imiglucerase/alglucerase in patients with Gaucher disease type 1. Genet Med 11:92–100

    Article  CAS  PubMed  Google Scholar 

  • Hollak CE, Hughes D, van Schaik IN, Schwierin N, Bembi B (2009) Miglustat (Zavesca®) in type 1 Gaucher disease: 5-year results of a post-authorisation safety surveillance programme. Pharmacoepidemiol Drug Saf 18:770–777

    Article  CAS  PubMed  Google Scholar 

  • Inokuchi J, Radin NS (1987) Preparation of the active isomer 1-phenyl-2-decanoyl-amino-3-morpholino-1-propanol inhibitor of murine glucocerebrosidase synthase. J Lipid Chem 28:565–571

    CAS  Google Scholar 

  • Jeyakumar M, Norflus F, Tifft CJ et al (2001) Enhanced survival in Sandhoff disease mice receiving a combination of substrate deprivation therapy and bone marrow transplantation. Blood 97:327–329

    Article  CAS  PubMed  Google Scholar 

  • Jeyakumar M, Dwek R, Butters T, Platt F (2005) Storage solutions: treating lysosomal disorders of the brain. Nat Rev Neurosci 6:713–725

    PubMed  Google Scholar 

  • Kishnani PS, DiRocco M, Kaplan P et al (2009) A randomized trial comparing the efficacy and safety of imiglucerase (Cerezyme) infusions every 4 weeks versus every 2 weeks in the maintenance therapy of adult patients with Gaucher disease type 1. Mol Genet Med. doi:10.1016/j.ymgme.2008.12.015

    Google Scholar 

  • Langeveld M, Ghauharali KJM, Sauerwein HP et al (2008) Type 1 Gaucher disease, a glycosphingolipid storage disorder, is associated with insulin resistance. J Clin Endocrinol Metab 93:845–851

    Article  CAS  PubMed  Google Scholar 

  • Lee L, Abe A, Shayman JA (1999) Improved inhibitors of glucosylceramide synthase. J Biol Chem 274:14662–14665

    Article  CAS  PubMed  Google Scholar 

  • Lieberman RL, Wustman BA, Huertas P et al (2007) Structure of acid-β-glucosidase with pharmacological chaperone provides insight into Gaucher disease. Nature Chem Biol 3:101–107

    Article  CAS  Google Scholar 

  • McEachern K, Nietupski JB, Chuang W-L et al (2006) AAV8-mediated expression of glucocerebrosidase ameliorates the storage pathology in the visceral organs of a mouse model of Gaucher disease. J Gene Med 8:719–729

    Article  CAS  PubMed  Google Scholar 

  • McEachern KA, Fung J, Komarnitsky S et al (2007) A specific and potent inhibitor of glucosylceramide synthase for substrate inhibition therapy of Gaucher disease. Mol Genet Metab 91:259–267

    Article  CAS  PubMed  Google Scholar 

  • Mehta A (2008) Gaucher disease: unmet treatment needs. Acta Paediatr 97:83–87

    Article  Google Scholar 

  • Mu T-W, Ong DST, Wang Y-J, Balch WE, Yates JR, Segatori L, Kelly JW (2008) Chemical and biological approaches synergize to ameliorate protein-folding diseases. Cell 134:769–761

    Article  CAS  PubMed  Google Scholar 

  • Pastores GM, Barnett NL, Kolodny EH (2005) An open-label, noncomparative study of miglustat in type 1 Gaucher disease: efficacy and tolerability over 24 months of treatment. Clin Ther 27:1215–1227

    Article  CAS  PubMed  Google Scholar 

  • Pastores GM, Giraldo P, Cherin P, Mehta A (2009) Goal-oriented therapy with miglustat in Gaucher disease. Curr Med Res Opin 25:23–37

    Article  CAS  PubMed  Google Scholar 

  • Platt FM, Neises GR, Reinkensmeier G et al (1997) Prevention of lysosomal storage in Tay-Sachs mice treated with N-butyldeoxynojirimycin. Science 276:428–431

    Article  CAS  PubMed  Google Scholar 

  • Shaaltiel Y, Bartfeld D, Hashmueli S et al (2007) Production of glucocerebrosidase with terminal mannose glycans for enzyme replacement therapy of Gaucher’s disease using a plant cell system. Plant Biotechnol J 5:579–590

    Article  CAS  PubMed  Google Scholar 

  • Starzyk K, Richards S, Yee J, Smith SE, Kingma W (2007) The long-term international safety experience of imiglucerase therapy for Gaucher disease. Mol Genet Metab 90:157–163

    Article  CAS  PubMed  Google Scholar 

  • Steet RA, Chung S, Wustman B, Powe A, Do H, Kornfeld SA (2006) The iminosugar isofagomine increases the activity of N370S mutant acid β-glucosidase in Gaucher fibroblasts by several mechanisms. Proc Natl Acad Sci USA 103:13813–13818

    Article  CAS  PubMed  Google Scholar 

  • van Patten SM, Hughes H, Huff MR et al (2007) Effect of mannose chain length on targeting of glucocerebrosidase for enzyme replacement therapy of Gaucher disease. Glycobiology 17:467–478

    Article  PubMed  Google Scholar 

  • Weinreb NJ, Charrow J, Andersson HC et al (2002) Effectiveness of enzyme replacement therapy in 1028 patients with type 1 Gaucher disease after 2-5 years of treatment: a report from the Gaucher Registry. Am J Med 113:112–119

    Article  CAS  PubMed  Google Scholar 

  • Weinreb N, Taylor J, Cox T, Yee J, vom Dahl S (2008) A benchmark analysis of the achievement of therapeutic goals for type 1 Gaucher disease patients treated with imiglucerase. Am J Hematol 83:890–895

    Article  CAS  PubMed  Google Scholar 

  • Wraith JE (2006) Limitations of enzyme replacement therapy; current and future. J Inherit Metab Dis 29:442–447

    Article  CAS  PubMed  Google Scholar 

  • Xu Y-H, Quinn B, Witte D, Grabowski GA (2003) Viable mouse models of acid β-glucosidase deficiency. Am J Pathol 163:2093–2101

    CAS  PubMed  Google Scholar 

  • Yu Z, Sawkar AR, Whalen LJ, Wong C-H, Kelly JW (2007) Isofagomine- and 2, 5-anhydro-2, 5-imino-D-glucitol-based glucocerebrosidase pharmacological chaperones for Gaucher disease intervention. J Med Chem 50:94–100

    Article  CAS  PubMed  Google Scholar 

  • Zhao H, Przybylska M, Wu I-H et al (2007) Inhibiting glycosphingolipid synthesis improves glycemic control and insulin sensitivity in animal models of type 2 diabetes. Diabetes 56:1210–1218

    Article  CAS  PubMed  Google Scholar 

  • Zimran A, Ilan Y, Elstein D (2009) Enzyme replacement therapy for mild patients with Gaucher disease. Am J Hematol. doi:10.1002/ajh.21369

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Leah Curtin, Susan Champagne, and the Department of Comparative Medicine at Genzyme for their technical assistance with the animal studies; Jennifer Johnson and Scott Bercury for performing the histological analysis; and Joshua Pacheco for the mass spectroscopy analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Marshall.

Additional information

Communicated by: Ed Wraith

Competing interests

John Marshall, Kerry Anne McEachern, Wei-Lien Chuang, Elizabeth Hutto, Craig Siegel, Ronald Scheule, Diane Copeland and Seng Cheng are all employees and stockholders of Genzyme Corporation. James Shayman has received scientific funding from Genzyme Corporation in the past. Greg Grabowski is a consultant to Genzyme Corporation and has received scientific funding from Genzyme Corporation in the past.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marshall, J., McEachern, K.A., Chuang, WL. et al. Improved management of lysosomal glucosylceramide levels in a mouse model of type 1 Gaucher disease using enzyme and substrate reduction therapy. J Inherit Metab Dis 33, 281–289 (2010). https://doi.org/10.1007/s10545-010-9072-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-010-9072-z

Keywords

Navigation