Skip to main content
Log in

Neuroimaging findings in children with paediatric neurotransmitter diseases

  • Symposium on Neurotransmitter Disorders
  • Published:
Journal of Inherited Metabolic Disease

Summary

Paediatric neurotransmitter diseases consist of a group of inherited neurometabolic diseases in children, and include disorders related to γ-amino butyric acid (GABA) metabolism, monoamine biosynthesis, etc. The diagnosis of paediatric neurotransmitter diseases remain a great challenge for paediatricians and child neurologists. In addition to clinical manifestations and CSF neurotransmitter measurement, neuroimaging findings can also be very informative for the diagnosis and evaluation of the patients. For patients with monoamine biosynthesis disorders, the functional evaluation of dopaminergic transmission also plays an important role. Understanding of the possible neuroimaging changes in paediatric neurotransmitter diseases is therefore of great value for the investigation of these patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

5-HIAA:

5-hydroxyindoleacetic acid

AADC:

aromatic l-amino acid decarboxylase

GABA:

γ-amino butyric acid

GTPCH I:

GTP cyclohydrolase I

HVA:

homovanillic acid

MAO:

monoamine oxidase

NAA:

N-acetylaspartate

PET:

positron emission tomography

SPECT:

single-photon-emission computed tomography

SR:

sepiapterin reductase

SSADH:

succinic semialdehyde dehydrogenase

TH:

tyrosine hydroxylase

References

  • Abeling NG, Duran M, Bakker HD, et al (2006) Sepiapterin reductase deficiency an autosomal recessive DOPA-responsive dystonia. Mol Genet Metab 89:116–120. doi:10.1016/j.ymgme.2006.03.010

    Article  PubMed  CAS  Google Scholar 

  • Akaboshi S, Hogema BM, Novelletto A, et al (2003) Mutational spectrum of the succinate semialdehyde dehydrogenase (ALDH5A1) gene and functional analysis of 27 novel disease-causing mutations in patients with SSADH deficiency. Hum Mutat 22:442–450

    Article  PubMed  CAS  Google Scholar 

  • Al-Essa MA, Bakheet SM, Patay ZJ, Powe JE, Ozand PT (2000) Clinical, FDG PET, MRI of the brain and biochemical observations in a patient with 4-hydroxybutyric aciduria: a progressive neurometabolic disease. Brain Dev 22:127–131. doi:10.1016/S0387-7604(99)00121-7

    Article  PubMed  CAS  Google Scholar 

  • Anselm IA, Darras BT (2006) Catecholamine toxicity in aromatic l-amino acid decarboxylase deficiency. Pediatr Neurol 35:142–144. doi:10.1016/j.pediatrneurol.2006.01.008

    Article  PubMed  Google Scholar 

  • Asanuma M, Miyazaki I, Ogawa N (2003) Dopamine- or l-DOPA-induced neurotoxicity: the role of dopamine quinone formation and tyrosinase in a model of Parkinson’s disease. Neurotox Res 5:165–176.

    Article  PubMed  Google Scholar 

  • Booij J, Halraken JBA, Bergmans P, et al (1998) Imaging of dopamine transporter with iodine-123-FP-CIT SPECT in healthy controls and patients with Parkinson’s disease. J Nucl Med 39:1879–1884.

    PubMed  CAS  Google Scholar 

  • Bräutigam C, Wevers RA, Jansen RJ, et al (1998) Biochemical hallmarks of tyrosine hydroxylase deficiency. Clin Chem 44:1897–1904.

    PubMed  Google Scholar 

  • Bräutigam C, Hyland K, Wevers R, et al (2002) Clinical and laboratory findings in twins with neonatal epileptic encephalopathy mimicking aromatic l-amino acid decarboxylase deficiency. Neuropediatrics 33:113–117. doi:10.1055/s-2002-33673

    Article  PubMed  Google Scholar 

  • Breit S, Reimold M, Reischl G, Klockgether T, Wüllner U (2006) [11C]d-threo-methylphenidate PET in patients with Parkinson’s disease and essential tremor. J Neural Transm 113:187–193. doi:10.1007/s00702-005-0311-7

    Article  PubMed  CAS  Google Scholar 

  • Buu NT (1989) Vesicular accumulation of dopamine following l-DOPA administration. Biochem Pharmacol 38:1787–1792. doi:10.1016/0006-2952(89)90413-9

    Article  PubMed  CAS  Google Scholar 

  • Chan AS, Ng LW, Poon LS, Chan WW, Wong YH (2007) Dopaminergic and adrenergic toxicities on SK-N-MC human neuroblastoma cells are mediated through G protein signaling and oxidative stress. Apoptosis 12:167–179. doi:10.1007/s10495-006-0524-8

    Article  PubMed  CAS  Google Scholar 

  • De Lonlay P, Nassogne MC, van Gennip AH, et al (2000) Tyrosine hydroxylase deficiency unresponsive to l-dopa treatment with unusual clinical and biochemical presentation. J Inherit Metab Dis 23:819–825. doi:10.1023/A:1026760602577

    Article  Google Scholar 

  • Dionisi-Vici C, Hoffmann GF, Leuzzi V, et al (2000) Tyrosine hydroxylase deficiency with severe clinical course: clinical and biochemical investigations and optimization of therapy. J Pediatr 136:560–562. doi:10.1016/S0022-3476(00)90027-1

    Article  PubMed  CAS  Google Scholar 

  • de Rijk-Van Andel JF, Gabreëls FJ, et al (2000) l-Dopa responsive infantile hypokinetic rigid parkinsonism due to tyrosine hydroxylase deficiency. Neurology 55:1926–1928.

    PubMed  Google Scholar 

  • Echenne B, Roubertie A, Assmann B, et al (2006) Sepiapterin reductase deficiency: clinical presentation and evaluation of long-term therapy. Pediatr Neurol 35:308–313. doi:10.1016/j.pediatrneurol.2006.05.006

    Article  PubMed  Google Scholar 

  • Eerola J, Tienari PJ, Kaakkola S, Nikkinen P, Launes J (2005) How useful is [123I]beta-CIT SPECT in clinical practice? J Neurol Neurosurg Psychiatry 76:1211–1216. doi:10.1136/jnnp.2004.045237

    Article  PubMed  CAS  Google Scholar 

  • Ethofer T, Seeger U, Klose U, et al (2004) Proton MR spectroscopy in succinic semialdehyde dehydrogenase deficiency. Neurology 62:1016–1018.

    PubMed  CAS  Google Scholar 

  • Friedman J, Hyland K, Blau N, MacCollin M (2006) Dopa-responsive hypersomnia and mixed movement disorder due to sepiapterin reductase deficiency. Neurology 67:2032–2035. doi:10.1212/01.wnl.0000247274.21261.b4

    Article  PubMed  Google Scholar 

  • Furukawa Y, Graf WD, Wong H, Shimadzu M, Kish SJ (2001) Dopa-responsive dystonia simulating spastic paraplegia due to tyrosine hydroxylase (TH) gene mutations. Neurology 56:260–263.

    PubMed  CAS  Google Scholar 

  • Gaspar P, Cases O, Maroteaux L (2003) The developmental role of serotonin: news from mouse molecular genetics. Nat Rev Neurosci 4:1002–1012. doi:10.1038/nrn1256

    Article  PubMed  CAS  Google Scholar 

  • Gibson KM, Christensen E, Jakobs C, et al (1997) The clinical phenotype of SSADH deficiency: case reports of 23 new patients. Pediatrics 99:567–574. doi:10.1542/peds.99.4.567

    Article  PubMed  CAS  Google Scholar 

  • Harper A, Bayliss M, Saha R, Scutt A, Nisbet A (2008) Late onset dopa-responsive dystonia with tremor, gait freezing and behavioural disturbance and a normal dopamine transporter scan. Age Ageing 37:719–720. doi:10.1093/ageing/afn216

    Article  PubMed  Google Scholar 

  • Hoffmann GF, Assmann B, Bräutigam C, et al (2003) Tyrosine hydroxylase deficiency causes progressive encephalopathy and dopa-nonresponsive dystonia. Ann Neurol 54Supplement 6:S56–65. doi:10.1002/ana.10632

    Article  PubMed  CAS  Google Scholar 

  • Horn AS (1990) Dopamine uptake: a review of progress in the last decade. Prog Neurobiol 34:387–400. doi:10.1016/0301-0082(90)90033-D

    Article  PubMed  CAS  Google Scholar 

  • Huang CC, Yen TC, Weng YH, Lu CS (2002) Normal dopamine transporter binding in dopa responsive dystonia. J Neurol 249:1016–1020. doi:10.1007/s00415-002-0776-3

    Article  PubMed  CAS  Google Scholar 

  • Hwang WJ, Yao WJ, Wey SP, Ting G (2004) Clinical and [99mTc]TRODAT-1/[123I]IBZM SPECT imaging findings in dopa-responsive dystonia. Eur Neurol 51:26–29. doi:10.1159/000074914

    Article  PubMed  Google Scholar 

  • Hyland K, Clayton PT (1990) Aromatic amino acid decarboxylase deficiency in twins. J Inherit Metab Dis 13:301–304. doi:10.1007/BF01799380

    Article  PubMed  CAS  Google Scholar 

  • Hyland K, Surtees RAH, Rodeck C, Clayton PT (1992) Aromatic l-amino acid decarboxylase deficiency: clinical features, diagnosis, and treatment of a new inborn error of neurotransmitter amine synthesis. Neurology 42:1980–1988.

    PubMed  CAS  Google Scholar 

  • Jenner PG, Brin MF (1998) Levodopa neurotoxicity: experimental studies versus clinical relevance. Neurology 50 (6 Suppl 6):S39–S43.

    PubMed  CAS  Google Scholar 

  • Knappskog PM, Flatmark T, Mallet J, Lüdecke B, Bartholomé K (1995) Recessively inherited l-DOPA-responsive dystonia caused by a point mutation (Q381K) in the tyrosine hydroxylase gene. Hum Mol Genet 4:1209–1212. doi:10.1093/hmg/4.7.1209

    Article  PubMed  CAS  Google Scholar 

  • Kung HF, Kung MP, Wey SP, Lin KJ, Yen TC (2007) Clinical acceptance of a molecular imaging agent: a long march with [99mTc]TRODAT. Nucl Med Biol 34:787–789. doi:10.1016/j.nucmedbio.2007.03.010

    Article  PubMed  CAS  Google Scholar 

  • Latini A, Scussiato K, Leipnitz G, et al (2007) Evidence for oxidative stress in tissues derived from succinate semialdehyde dehydrogenase-deficient mice. J Inherit Metab Dis 30:800–810. doi:10.1007/s10545-007-0599-6

    Article  PubMed  CAS  Google Scholar 

  • Lee CS, Samii A, Sossi V, et al (2000) In vivo positron emission tomographic evidence for compensatory changes in presynaptic dopaminergic nerve terminals in Parkinson's disease. Ann Neurol 47:493–503.

    Article  PubMed  CAS  Google Scholar 

  • Lu CS, Chang HC, Kuo PC, et al (2004) The parkinsonian phenotype of spinocerebellar ataxia type 3 in a Taiwanese family. Parkinsonism Relat Disord 10:369–373. doi:10.1016/j.parkreldis.2004.03.009

    Article  PubMed  Google Scholar 

  • Martin WR, Palmer MR, Patlak CS, Calne DB (1989) Nigrostriatal function in humans studied with positron emission tomography. Ann Neurol 26:535–542. doi:10.1002/ana.410260407

    Article  PubMed  CAS  Google Scholar 

  • Martin WR, Wieler M, Stoessl AJ, Schulzer M (2008) Dihydrotetrabenazine positron emission tomography imaging in early, untreated Parkinson’s disease. Ann Neurol 63:388–394. doi:10.1002/ana.21320

    Article  PubMed  Google Scholar 

  • Miller DW, Abercrombie ED (1999) Role of high-affinity dopamine uptake and impulse activity in the appearance of extracellular dopamine in striatum after administration of exogenous l-DOPA: studies in intact and 6-hydroxydopamine-treated rats. J Neurochem 72:1516–1522. doi:10.1046/j.1471-4159.1999.721516.x

    Article  PubMed  CAS  Google Scholar 

  • Nagata E, Kosakai A, Tanaka K, et al (2007) Dopa-responsive dystonia (Segawa disease)-like disease accompanied by mental retardation: a case report. Mov Disord 22:1202–1203. doi:10.1002/mds.21517

    Article  PubMed  Google Scholar 

  • Neville BG, Parascandalo R, Farrugia R, Felice A (2005) Sepiapterin reductase deficiency: a congenital dopa-responsive motor and cognitive disorder. Brain 128Pt 10:2291–2296. doi:10.1093/brain/awh603

    Article  PubMed  CAS  Google Scholar 

  • Pearl PL, Gibson KM, Acosta MT, et al (2003a) Clinical spectrum of succinic semialdehyde dehydrogenase deficiency. Neurology 60:1413–1417.

    CAS  Google Scholar 

  • Pearl PL, Novotny EJ, Acosta MT, Jakobs C, Gibson KM (2003b) Succinic semialdehyde dehydrogenase deficiency in children and adults. Ann Neurol 54 (Suppl 6):S73–80. doi:10.1002/ana.10629

    Article  CAS  Google Scholar 

  • Pearl PL, Gibson KM (2004) Clinical aspects of the disorders of GABA metabolism in children. Curr Opin Neurol 17:107–113. doi:10.1097/00019052-200404000-00005

    Article  PubMed  CAS  Google Scholar 

  • Pearl PL, Vezina LG, Saneto RP, et al (2009) Cerebral MRI abnormalities associated with vigabatrin therapy. Epilepsia 50:184–194. doi:10.1111/j.1528-1167.2008.01728.x

    Article  PubMed  CAS  Google Scholar 

  • Pons R, Ford B, Chiriboga CA, et al (2004) Aromatic l-amino acid decarboxylase deficiency: clinical features, treatment and prognosis. Neurology 62:1058–1065.

    PubMed  CAS  Google Scholar 

  • Sawle GV, Leenders KL, Brooks DJ, et al (1991) Dopa-responsive dystonia: [18F]dopa positron emission tomography. Ann Neurol 30:24–30. doi:10.1002/ana.410300106

    Article  PubMed  CAS  Google Scholar 

  • Schiller A, Wevers RA, Steenbergen GC, Blau N, Jung HH (2004) Long-term course of l-dopa-responsive dystonia caused by tyrosine hydroxylase deficiency. Neurology 63:1524–1526.

    PubMed  CAS  Google Scholar 

  • Snow BJ, Nygaard TG, Takahashi H, Calne DB (1993) Positron emission tomographic studies of dopa-responsive dystonia and early-onset idiopathic parkinsonism. Ann Neurol 34:733–738. doi:10.1002/ana.410340518

    Article  PubMed  CAS  Google Scholar 

  • Swoboda KJ, Hyland K, Goldstein DS, et al (1999) Clinical and therapeutic observations in aromatic l-amino acid decarboxylase deficiency. Neurology 53:1205–1211.

    PubMed  CAS  Google Scholar 

  • Swoboda KJ, Saul JP, McKenna CE, Speller NB, Hyland K (2003) Aromatic l-amino acid decarboxylase deficiency: overview of clinical features and outcomes. Ann Neurol 54 (Suppl 6):S49–S55. doi:10.1002/ana.10631

    Article  PubMed  CAS  Google Scholar 

  • Tennison M (1999) Focal lesion in the splenium of the corpus callosum in epileptic patients: antiepileptic drug toxicity? AJNR Am J Neuroradiol 20:131–132.

    PubMed  CAS  Google Scholar 

  • Van Laere K, De Ceuninck L, Dom R, et al (2004) Dopamine transporter SPECT using fast kinetic ligands: 123I-FP-beta-CIT versus 99mTc-TRODAT-1. Eur J Nucl Med Mol Imaging 31:1119–1127.

    Article  PubMed  CAS  Google Scholar 

  • Verbeek MM, Willemsen MA, Wevers RA, et al (2008) Two Greek siblings with sepiapterin reductase deficiency. Mol Genet Metab 94:403–409. doi:10.1016/j.ymgme.2008.04.003

    Article  PubMed  CAS  Google Scholar 

  • Wüllner U, Reimold M, Abele M, et al (2005) Dopamine transporter positron emission tomography in spinocerebellar ataxias type 1, 2, 3, and 6. Arch Neurol 62:1280–1285. doi:10.1001/archneur.62.8.1280

    Article  PubMed  Google Scholar 

  • Yalcinkaya C, Gibson KM, Gunduz E, et al (2000) MRI Findings in succinic semialdehyde dehydrogenase deficiency. Neuropediatrics 31:45–46. doi:10.1055/s-2000-15298

    Article  PubMed  CAS  Google Scholar 

  • Zafeiriou DI, Willemsen MA, Verbeek MM, Vargiami E, Ververi A, Wevers R (2009) Tyrosine hydroxylase deficiency with severe clinical course. Mol Genet Metab 97:18–20. doi:10.1016/j.ymgme.2009.02.001

    Article  PubMed  CAS  Google Scholar 

  • Ziyeh S, Berlis A, Korinthenberg R, et al (2002) Selective involvement of the globus pallidus and dentate nucleus in succinic semialdehyde dehydrogenase activity. Pediatr Radiol 32:598–600. doi:10.1007/s00247-002-0717-4

    Article  PubMed  Google Scholar 

  • Zhou QY, Qualfe CJ, Palmiter RD (1995) Targeted disruption of the tyrosine hydroxylase gene reveals that catecholamines are required for mouse fetal development. Nature 374:640–643. doi:10.1038/374640a0

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The symposium was supported in part by R13 NS 60363 from the NIH NINDS and Office of Rare Diseases (ORD), and the Johns Hopkins University School of Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wang-Tso Lee.

Additional information

Communicating editor: Michael Gibson

Competing interests: None declared

Presented at the 2nd Pediatric Neurotransmitter Disease (PND) Association Symposium, “Medical Management of Pediatric Neurotransmitter Disorders: A Multidisciplinary Approach”, 18–19 July, 2008, Hyatt Dulles Hotel, Herndon, VA, USA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, WT., Weng, WC., Peng, SF. et al. Neuroimaging findings in children with paediatric neurotransmitter diseases. J Inherit Metab Dis 32, 361–370 (2009). https://doi.org/10.1007/s10545-009-1106-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-009-1106-z

Keywords

Navigation