Skip to main content

Advertisement

Log in

Dopaminergic and adrenergic toxicities on SK-N-MC human neuroblastoma cells are mediated through G protein signaling and oxidative stress

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Dopamine and norepinephrine are neurotransmitters which participate in various regulatory functions of the human brain. These functions are lost in neurodegenerative diseases including Parkinson’s disease and Alzheimer’s disease. In this study, we used SK-N-MC neuroblastoma cells to investigate the cytotoxicities of high concentrations of dopamine and norepinephrine on neuronal cells. Dopamine, norepinephrine, as well as their corresponding synthetic agonists (SKF38393 and isoproterenol, respectively) triggered SK-N-MC cell death when applied at 50–100 μM persistently for 2 days. This catecholamine-induced cell death appears to be neuronal specific, as demonstrated by their inabilities of triggering apoptosis of A549 lung carcinoma cells and Cos-7 kidney fibroblasts. By pretreating SK-N-MC cells with target-specific inhibitors before administration of catecholamine, components of G protein signaling (i.e. G s /cAMP/PKA), monoamine oxidases, nitric oxide synthase, c-Jun N-terminal kinase and oxidative stress were found to be involved in this dopamine/norepinephrine-induced cytotoxicity, which subsequently led to caspase-dependent and -independent apoptotic responses as well as DNA degradation. In contrast, agonists of G i -coupled dopamine receptors and adrenergic receptors (quinpirole and UK14,304, respectively) were incapable of triggering apoptosis of SK-N-MC cells. Our results suggest that both G protein (G s )-mediated signaling cascade and oxidative stress participate in the dopamine/norepinephrine-induced neuronal apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. Burke WJ, Li SW, Chung HD, Ruggiero DA, Kristal BS, Johnson EM, Lampe P, Kumar VB, Franko M, Williams EA, Zahm DS (2004) Neurotoxicity of MAO metabolites of catecholamine neurotransmitters: role in neurodegenerative diseases. Neurotoxicology. 25(1–2):101–15

    Article  CAS  PubMed  Google Scholar 

  2. Lang AE, Lozano AM (1998) Parkinson’s disease. N Engl J Med. 8;339(15):1044–053

    Article  Google Scholar 

  3. Bondareff W, Mountjoy CQ, Roth M (1982) Loss of neurons of origin of the adrenergic projection to cerebral cortex (nucleus locus ceruleus) in senile dementia. Neurology. 32(2):164–68

    CAS  PubMed  Google Scholar 

  4. Burke WJ, Galvin NJ, Chung HD, Stoff SA, Gillespie KN, Cataldo AM, Nixon RA (1994) Degenerative changes in epinephrine tonic vasomotor neurons in Alzheimer’s disease. Brain Res. 24;661(1–2):35–2

    Article  Google Scholar 

  5. Wintermeyer P, Kruger R, Kuhn W, Muller T, Woitalla D, Berg D, Becker G, Leroy E, Polymeropoulos M, Berger K, Przuntek H, Schols L, Epplen JT, Riess O (2000) Mutation analysis and association studies of the UCHL1 gene in German Parkinson’s disease patients. Neuroreport. 11(10):2079–082

    Article  CAS  PubMed  Google Scholar 

  6. Wersinger C, Sidhu A (2003) Differential cytotoxicity of dopamine and H2O2 in a human neuroblastoma divided cell line transfected with alpha-synuclein and its familial Parkinson’s disease-linked mutants. Neurosci Lett. 15;342(1–2):124–28

    Article  Google Scholar 

  7. Paisan-Ruiz C, Jain S, Evans EW, Gilks WP, Simon J, Van Der Brug M, Lopez deMunain A, Aparicio S, Gil AM, Khan N, Johnson J, Martinez JR, Nicholl D, Carrera IM, Pena AS, de Silva R, Lees A, Marti-Masso JF, Perez-Tur J, Wood NW, Singleton AB (2004) Cloning of the gene containing mutations that cause PARK8-linked Parkinson’s disease. Neuron. 44(4), 595–00

    Article  CAS  PubMed  Google Scholar 

  8. Valente EM, Abou-Sleiman PM, Caputo V, Muqit MM, Harvey K, Gispert S, Ali Z, Del Turco D, Bentivoglio AR, Healy DG, Albanese A, Nussbaum R, Gonzalez-Maldonado R, Deller T, Salvi S, Cortelli P, Gilks WP, Latchman DS, Harvey RJ, Dallapiccola B, Auburger G, Wood NW (2004) Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science. 304(5674):1158–160

    Article  CAS  PubMed  Google Scholar 

  9. von Coelln R, Dawson VL, Dawson TM (2004) Parkin-associated Parkinson’s disease. Cell Tissue Res. 318(1):175–84

    Article  PubMed  CAS  Google Scholar 

  10. Itier JM, Ibanez P, Mena MA et al (2003) Parkin gene inactivation alters behaviour and dopamine neurotransmission in the mouse. Hum Mol Genet. 15;12(18):2277–291

    Article  CAS  Google Scholar 

  11. Walkinshaw G, Waters CM (1995) Induction of apoptosis in catecholaminergic PC12 cells by L-DOPA. Implications for the treatment of Parkinson’s disease. J Clin Invest. 95(6), 2458–464

    Article  CAS  PubMed  Google Scholar 

  12. Chen J, Wersinger C, Sidhu A (2003) Chronic stimulation of D1 dopamine receptors in human SK-N-MC neuroblastoma cells induces nitric-oxide synthase activation and cytotoxicity. J Biol Chem. 278(30):28089–8100

    Article  CAS  PubMed  Google Scholar 

  13. Mesulam MM (1996) The systems-level organization of cholinergic innervation in the human cerebral cortex and its alterations in Alzheimer’s disease. Prog Brain Res. 109:285–97

    Article  CAS  PubMed  Google Scholar 

  14. Hutton M, Hardy J (1997) The presenilins and Alzheimer’s disease. Hum Mol Genet. 6(10):1639–646

    Article  CAS  PubMed  Google Scholar 

  15. Zarow C, Lyness SA, Mortimer JA, Chui HC (2003) Neuronal loss is greater in the locus coeruleus than nucleus basalis and substantia nigra in Alzheimer and Parkinson diseases. Arch Neurol 60(3):337–41

    Article  PubMed  Google Scholar 

  16. Burke WJ, Li SW, Schmitt CA, Xia P, Chung HD, Gillespie KN (1999) Accumulation of 3,4-dihydroxyphenylglycolaldehyde, the neurotoxic monoamine oxidase A metabolite of norepinephrine, in locus ceruleus cell bodies in Alzheimer’s disease: mechanism of neuron death. Brain Res 816(2):633–37

    Article  CAS  PubMed  Google Scholar 

  17. Storch A, Ludolph AC, Schwarz J (2004) Dopamine transporter: involvement in selective dopaminergic neurotoxicity and degeneration. J Neural Transm 111:1267–286

    Article  CAS  PubMed  Google Scholar 

  18. Ramsay RR, Singer TP (1986) Energy-dependent uptake of N-methyl-4-phenylpyridinium, the neurotoxic metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, by mitochondria. J Biol Chem 261:7585–587

    CAS  PubMed  Google Scholar 

  19. Storch A, Kaftan A, Burkhardt K, Schwarz J (2000) 1-Methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline (salsolinol) is toxic to dopaminergic neuroblastoma SH-SY5Y cells via impairment of cellular energy metabolism. Brain Res 855:67–5

    Article  CAS  PubMed  Google Scholar 

  20. Przedborski S, Jackson-Lewis V, Djaldetti R, Liberatore G, Vila M, Vukosavic S, Almer G (2000) The parkinsonian toxin MPTP: action and mechanism. Restor Neurol Neurosci 16:135–42

    CAS  PubMed  Google Scholar 

  21. Noh JS, Kim EY, Kang JS, Kim HR, Oh YJ, Gwag BJ (1999) Neurotoxic and neuroprotective actions of catecholamines in cortical neurons. Exp Neurol 159(1):217–24

    Article  CAS  PubMed  Google Scholar 

  22. Tabakman R, Lecht S, Lazarovici P (2004) Neuroprotection by monoamine oxidase B inhibitors: a therapeutic strategy for Parkinson’s disease? Bioessays 26(1):80–0

    Article  CAS  PubMed  Google Scholar 

  23. Burke WJ, Kristal BS, Yu BP, Li SW, Lin TS (1998) Norepinephrine transmitter metabolite generates free radicals and activates mitochondrial permeability transition: a mechanism for DOPEGAL-induced apoptosis. Brain Res 787:328–32

    Article  CAS  PubMed  Google Scholar 

  24. Li SW, Lin T-S, Minteer, Burke WJ (2001) 3,4-Dihydroxyphenylacetaldehyde and hydrogen peroxide generate a hydroxyl radical: possible role in Parkinson’s disease pathogenesis. Mol Brain Res 93:1–

    Article  CAS  PubMed  Google Scholar 

  25. Kristal BS, Conway AD, Brown AM, Jain JC, Ulluci PA, Li SW et al (2001) Selective dopaminergic vulnerability: 3,4-dihydroxyphenylacetaldehyde targets mitochondria. Free Radic Biol Med 30:924–31

    Article  CAS  PubMed  Google Scholar 

  26. Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD (1997) The release of cytochrome c from mitochondria: a primary site for Bcl2 regulation of apoptosis. Science 275:1132–136

    Article  CAS  PubMed  Google Scholar 

  27. Wallace DC (1999) Mitochondrial diseases in man and mouse. Science 283:1482–488

    Article  CAS  PubMed  Google Scholar 

  28. Kothakota S, Azuma T, Reinhard C, Klippel A, Tang J, Chu K, McGarry TJ, Kirschner MW, Koths K, Kwiatkowski DJ, Williams LT (1997) Caspase-3-generated fragment of gelsolin: effector of morphological changes in apoptosis. Science 278:294–98

    Article  CAS  PubMed  Google Scholar 

  29. Scarlett SL, Murphy MP (1997) Release of apoptogenic proteins from mitochondrial intermembrane space during mitochondrial permeability transition. FEBS Lett 418:282–86

    Article  CAS  PubMed  Google Scholar 

  30. Yip EC, Chan AS, Pang H, Tam YK, Wong YH. Protocatechuic acid induces cell death in HepG2 hepatocarcinoma cells through a c-Jun N-terminal kinase-dependent mechanism. Cell Biol Toxical 22(4):293–02

  31. Zhen X, Uryu K, Wang HY, Friedman E (1998) D1 Dopamine receptor agonists mediate activation of p38 mitogen-activated protein kinase and c-Jun amino-terminal kinase by a protein kinase A-dependent mechanism in SK-N-MC human neuroblastoma cells. J Pharmacol Exp Ther 54:453–58

    CAS  Google Scholar 

  32. Chan AS, Yeung WW, Wong YH (2005) Integration of G Protein Signals by Extracellular Signal-regulated Protein Kinases in SK-N-MC Neuroepithelioma Cells. J Neurochem 94:1457–470

    Article  CAS  PubMed  Google Scholar 

  33. Jin Z, El-Deiry WS (2005) Overview of cell death signaling pathways. Cancer Biol Ther 4(2):139–63

    Article  CAS  PubMed  Google Scholar 

  34. Chauhan V, Chauhan A (2006) Oxidative stress in Alzheimer’s disease. Pathophysiology. 13(3):195–08

    Article  CAS  PubMed  Google Scholar 

  35. Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem 97(6):634–658

    Article  CAS  Google Scholar 

  36. Luo Y, Umegaki H, Wang X, Abe R, Roth GS (1998) Dopamine induces apoptosis through an oxidation-involved SAPK/JNK activation pathway. J Biol Chem 273(6):3756–764

    Article  CAS  PubMed  Google Scholar 

  37. Andersen JK (2004) Oxidative stress in neurodegeneration: cause or consequence? Nat Med 10 Suppl:S18-S25

    PubMed  Google Scholar 

  38. Lahiri DK, Farlow MR, Sambamurti K, Greig NH, Giacobini E, Schneider LS (2003) A critical analysis of new molecular targets and strategies for drug developments in Alzheimer’s disease. Curr Drug Targets 4(2):97–12

    Article  CAS  PubMed  Google Scholar 

  39. Riederer P, Danielczyk W, Grunblatt E (2004) Monoamine oxidase-B inhibition in Alzheimer’s disease. Neurotoxicology 25(1–2):271–77

    Article  CAS  PubMed  Google Scholar 

  40. Burke WJ, Li SW, Schmitt CA, Zahm DS, Chung HD, Conway AD et al (2000) Catecholamine-derived aldehyde neurotoxins. In: Storch A, Collins MA (eds). Neurotoxic factors in Parkinson’s disease and related disorders. New York (NY), Kluwer Academic Publishers, pp 167–80

    Google Scholar 

  41. Zhou XM, Fishman PH (1991) Desensitization of the human b1-adrenergic receptor. Involvement of the cyclic AMP-dependent but not a receptor-specific protein kinase. J Biol Chem 266(12):7462–468

    CAS  PubMed  Google Scholar 

  42. Sidhu A (1997) Regulation and expression of D-1, but not D-5, dopamine receptors in human SK-N-MC neuroblastoma cells. J Recept Signal Transduct Res 17(5):777–84

    Article  CAS  PubMed  Google Scholar 

  43. Sidhu A, Kimura K, Uh M, White BH, Patel S (1998) Multiple coupling of human D5 dopamine receptors to guanine nucleotide binding proteins Gs and Gz. J Neurochem. 70(6): 2459–467

    Article  CAS  PubMed  Google Scholar 

  44. Ryman-Rasmussen JP, Nichols DE, Mailman RB (2005) Differential activation of adenylate cyclase and receptor internalization by novel dopamine D1 receptor agonists. Mol Pharmacol. 68(4):1039–048

    Article  CAS  PubMed  Google Scholar 

  45. Pifl C, Hornykiewicz O, Giros B, Caron MG (1996) Catecholamine transporters and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity: studies comparing the cloned human noradrenaline and human dopamine transporter. J Pharmacol Exp Ther 277(3):1437–443

    CAS  PubMed  Google Scholar 

  46. Saelens X, Festjens N, Vande Walle L, van Gurp M, van Loo G, Vandenabeele P (2004) Toxic proteins released from mitochondria in cell death. Oncogene 23(16):2861–874

    Article  CAS  PubMed  Google Scholar 

  47. Chen J, Rusnak M, Luedtke RR, Sidhu A (2004) D1 dopamine receptor mediates dopamine-induced cytotoxicity via the ERK signal cascade. J Biol Chem 279:39317–9330

    Article  CAS  PubMed  Google Scholar 

  48. Sharpe JC, Arnoult D, Youle RJ (2004) Control of mitochondrial permeability by Bcl-2 family members. Biochim Biophys Acta 1644(2–3):107–13

    CAS  PubMed  Google Scholar 

  49. Jassen AK, Yang H, Miller GM, Calder E, Madras BK (2006) Receptor regulation of gene expression of axon guidance molecules: implications for adaptation. Mol Pharmacol 70(1): 71–7

    CAS  PubMed  Google Scholar 

  50. Shirvan A, Ziv I, Fleminger G, Shina R, He Z, Brudo I, Melamed E, Barzilai A (1999) Semaphorins as mediators of neuronal apoptosis. J Neurochem 73(3):961–71

    Article  CAS  PubMed  Google Scholar 

  51. Wick MM (1978) Dopamine: a novel antitumor agent active against B-16 melanoma in vivo. J Invest Dermatol 71(2):163–64

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yung. H. Wong.

Additional information

Anthony Chan and Ng Contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chan, A.S.L., Ng, L.W.C., Poon, L.S.W. et al. Dopaminergic and adrenergic toxicities on SK-N-MC human neuroblastoma cells are mediated through G protein signaling and oxidative stress. Apoptosis 12, 167–179 (2007). https://doi.org/10.1007/s10495-006-0524-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-006-0524-8

Keywords

Navigation