Skip to main content
Log in

Mitochondrial cytochrome c release: a factor to consider in mitochondrial disease?

  • Original Article
  • Published:
Journal of Inherited Metabolic Disease

Summary

The pathogenesis of mitochondrial disorders has largely focused on the impairment of cellular energy metabolism. However, mitochondrial dysfunction has also been implicated as a factor in the initiation of apoptosis due to the translocation of cytochrome c, from mitochondria to the cytosol, and the subsequent cleavage of pro-caspase 3. In this study, we determined the cytochrome c content of cytosols (skeletal muscle) prepared from 22 patients with evidence of compromised mitochondrial electron transport chain enzyme activity and 26 disease controls. The cytochrome c content of the mitochondrial electron transport chain-deficient group was found to be significantly (p < 0.02) elevated when compared with the control group (63.7 ± 15.5 versus 27.7 ± 2.5 ng/mg protein). Furthermore, a relationship between the cytosolic cytochrome c content of skeletal muscle and complex I and complex IV activities was demonstrated. Such data raise the possibility that mitochondrial cytochrome c release may be a feature of mitochondrial disorders, particularly for those patients with marked deficiencies of respiratory chain enzymes. Whether initiation of apoptosis occurs as a direct consequence of this cytochrome c release has not been fully evaluated here. However, for one patient with the greatest documented cytosolic cytochrome c content, caspase 3 could be demonstrated in the cytosolic preparation. Further work is required in order to establish whether a relationship also exists between caspase 3 formation and the magnitude of respiratory chain deficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ETC:

electron transport chain

mtDNA:

mitochondrial DNA

SEM:

standard error of the mean

References

  • Brustovetsky N, Dubinsky JM, Antonsson B, Jemmerson R (2003) Two pathways for tBID-induced cytochrome c release from rat brain mitochondria: BAK versus BAX dependence. J Neurochem 84: 196–207. doi:10.1046/j.1471-4159.2003.01545.x.

    Article  PubMed  CAS  Google Scholar 

  • Clayton R, Clark JB, Sharpe M (2005) Cytochrome c release from rat brain mitochondria is proportional to the mitochondrial functional deficit: implications for apoptosis and neurodegenerative disease. J Neurochem 92: 840–849. doi:10.1111/j.1471-4159.2004.02918.x.

    Article  PubMed  CAS  Google Scholar 

  • Davey GP, Clark JB (1996) Threshold effects and control of oxidative phosphorylation in nonsynaptic rat brain mitochondria. J Neurochem 66: 1617–1624.

    Article  PubMed  CAS  Google Scholar 

  • Goodsell DS (2004) The molecular perspective; cytochrome c and apoptosis. Oncologist 9: 226–227.

    Google Scholar 

  • Heales SJ, Gegg ME, Clark JB (2002) Oxidative phosphorylation: structure, function, and intermediary metabolism. Int Rev Neurobiol 53: 25–56. doi:10.1016/S0074-7742(02)53003-8.

    Article  PubMed  CAS  Google Scholar 

  • Jacobson J, Duchen MR (2001) ‘What nourishes me, destroys me’: towards a new mitochondrial biology. Cell Death Differ 8(10): 963–966. doi:10.1038/sj.cdd.4400911.

    Article  PubMed  CAS  Google Scholar 

  • King TE (1967) Preparations of succinate-cytochrome c reductase and the cytochrome b-c 1 particle, and reconstitution of succinate-cytochrome c reductase. Methods Enzymol 10: 216–225.

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265–275.

    PubMed  CAS  Google Scholar 

  • Mirabella M, Di Giovanni S, Silvestri G, Tonali P, Servidei S (2000) Apoptosis in mitochondrial encephalomyopathies with mitochondrial DNA mutations: a potential pathogenic mechanism. Brain 123: 93–104. doi:10.1093/brain/123.1.93.

    Article  PubMed  Google Scholar 

  • Ott M, Robertson JD, Gogvadze V, Zhivotovsky B, Orrenius S (2002) cytochrome c release from mitochondria proceeds by a two step process. Proc Natl Acad Sci U S A 99: 1259–1263. doi:10.1073/pnas.241655498.

    Article  PubMed  CAS  Google Scholar 

  • Ragan CI, Wilson MT, Darley-Usmar VM, et al (1987) Subfractionation of mitochondria and isolation of the proteins of oxidative phosphorylation. In: Darley-Usmar VM, Rickwood D, Wilson MT, eds. Mitochondria, a Practical Approach. London: IRL Press, 79–112.

    Google Scholar 

  • Selak MA, de Chadarevian JP, Melvin JJ, Grover WD, Salganicoff L, Kaye EM (2000) Mitochondrial activity in Pompe’s disease. Pediatr Neurol 23: 54–57. doi:10.1016/S0887-8994(00)00145-4.

    Article  PubMed  CAS  Google Scholar 

  • Shepherd D, Garland PB (1969) The kinetic properties of citrate synthase from rat liver mitochondria. Biochem J 114: 597–610.

    PubMed  CAS  Google Scholar 

  • Shimizu S, Ide T, Yanagida T, Tsujimoto Y (2000) Electrophysiological study of a novel large pore formed by Bax and the voltage dependent anion channel that is permeable to cytochrome c. J Biol Chem 275: 12321–12325. doi:10.1074/jbc.275.16.12321.

    Article  PubMed  CAS  Google Scholar 

  • Skulachev VP (1998) Cytochrome c in the apoptotic and antioxidant cascades. FEBS Lett 423: 275–280. doi:10.1016/S0014-5793(98)00061-1.

    Article  PubMed  CAS  Google Scholar 

  • Umaki Y, Mitsui T, Endo I, Akaike M, Matsumoto T (2002) Apoptosis-related changes in skeletal muscles of patients with mitochondrial diseases. Acta Neuropathol 103: 163–170. doi:10.1007/s004010100446.

    Article  PubMed  CAS  Google Scholar 

  • Vassault A (1983) l-Lactate dehydrogenase. UV method with pyruvate and NADH. In: Bergmeyer J, Grassl M, eds. Methods of Enzymic Analysis, Vol. 3. Weinheim: Verlag Chemie GmbH, 118–126.

    Google Scholar 

  • Wharton DC, Tzagoloff A (1967) Cytochrome oxidase from beef heart mitochondria. Methods Enzymol 10: 245–250[Abstract]. doi:10.1016/0076-6879(67)10048-7.

    Article  CAS  Google Scholar 

  • Zamaraeva MV, Sabirov RZ, Maeno E, Ando-Akatsuka Y, Bessonova SV, Okada Y (2005) Cells die with increase cytosolic ATP during apoptosis: a bioluminescence study with intracellular luciferase. Cell Death Differ 12: 1390–1397.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. J. R. Heales.

Additional information

Communicating editor: Wolfgang Sperl

Competing interests: None declared

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oppenheim, M.L.S., Hargreaves, I.P., Pope, S. et al. Mitochondrial cytochrome c release: a factor to consider in mitochondrial disease?. J Inherit Metab Dis 32, 269–273 (2009). https://doi.org/10.1007/s10545-009-1061-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-009-1061-8

Keywords

Navigation