Skip to main content
Log in

Regionally selective decreases in cerebral glucose metabolism in a mouse model of phenylketonuria

  • Original Article
  • Published:
Journal of Inherited Metabolic Disease

Summary

Impairment of cognitive function is characteristic of untreated phenylketonuria in humans and in the pah enu2 mouse model of phenylketonuria. We measured regional cerebral metabolic rate for glucose in the adult male pah enu2 mouse to determine the effect of PKU on functional activity in brain and to discern what, if any, brain areas are affected. Our results demonstrate selective decreases (17–21%) in regions thought to be involved in executive function. Regions most significantly affected include prelimbic, anterior cingulate, orbital frontal and perirhinal cortex. Sensory and motor areas of cortex and hippocampus were remarkably unaffected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DG:

deoxyglucose

HMZ:

homozygous

HTZ:

heterozygous

i.v.:

intravenous

PKU:

phenylketonuria

rCMRglc :

regional cerebral metabolic rate for glucose

WT:

wild-type

References

  • Bauman ML, Kemper ThL (1982) Morphologic and histoanatomic observations of the brain in untreated human phenylketonuria. Acta Neuropath (Berl) 85: 55–63.

    Article  Google Scholar 

  • Bayliss BL, Gaffan D (1991) Amygdalectomy and ventromedial prefrontal ablation produce similar deficits in food choice and in simple object discrimination learning for an unseen reward. Exp Brain Res 86: 617–622.

    Article  Google Scholar 

  • Cabib S, Pascucci T, Ventura R, Romano V, Puglisi-Allegra S (2003) The behavioral profile of severe mental retardation in a genetic mouse model of phenylketonuria. Behav Genet 33: 301–310.

    Article  PubMed  Google Scholar 

  • Chudasama Y, Robbins TW (2003) Dissociable contributions of the orbitofrontal and infralimbic cortex to Pavlovian autoshaping and discrimination reversal learning: Further evidence for the functional heterogeneity of the rodent frontal cortex. J Neurosci 23: 8771–8780.

    CAS  PubMed  Google Scholar 

  • Cohen NJ, Eichenbaum H (1994) Memory, Amnesia, and the Hippocampus. Cambridge, MA: MIT Press.

    Google Scholar 

  • Dow-Edwards D, Crane A, Rosloff B, Kennedy C, Sokoloff L (1986) Local cerebral glucose utilization in the adult cretinous rat. Brain Res 373: 139–145.

    Article  CAS  PubMed  Google Scholar 

  • Friedman HR, Goldman-Rakic PS (1994) Coactivation of prefrontal cortex and inferior parietal cortex in working memory tasks revealed by 2DG functional mapping in the rhesus monkey. J Neurosci 14: 2775–2788.

    CAS  PubMed  Google Scholar 

  • Gallagher M, McMahan RW, Schoenbaum G (1999) Orbitofrontal cortex and representation of incentive value in associative learning. J Neurosci 19: 6610–6614.

    CAS  PubMed  Google Scholar 

  • Goldman-Rakic PS (1995) Cellular basis of working memory. Neuron 14: 477–485.

    Article  CAS  PubMed  Google Scholar 

  • Hasselbalch S, Knudsen GM, Toft PB, et al (1996) Cerebral glucose metabolism is decreased in white matter changes in patients with phenylketonuria. Pediatr Res 40: 21–24.

    Article  CAS  PubMed  Google Scholar 

  • Jay TM, Jouvet M, DesRosiers MH (1985) Local cerebral glucose utilization in the free moving mouse: a comparison during two stages of the activity–rest cycle. Brain Res 342: 297–306.

    Article  CAS  PubMed  Google Scholar 

  • Jones B, Mishkin M (1972) Limbic lesions and the problem of stimulus-reinforcement association. Exp Neurol 36: 362–377.

    Article  CAS  PubMed  Google Scholar 

  • McDonald JD, Charlton CK (1997) Characterization of mutations at the phenylalanine hydroxylase locus. Genomics 39: 402–405.

    Article  CAS  PubMed  Google Scholar 

  • Moore D (1994) Current Protocols Mol Biol 1: 2.1.1.

    Google Scholar 

  • Otto T, Eichenbaum H (1992) Complimentary roles of the orbital prefrontal cortex and the perirhinal-entorhinal cortices in an odor-guided delayed-nonmatching-to-sample task. Behav Neurosci 106: 762–775.

    Article  CAS  PubMed  Google Scholar 

  • Paxinos G, Franklin KBJ (2001) The Mouse Brain in Stereotaxic Coordinates. New York: Academic Press.

    Google Scholar 

  • Puglisi-Allegra S, Cabib S, Pascucci T, Ventura R, Cali F, Romano V (2000) Dramatic brain aminergic deficit in a genetic mouse model of phenylketonuria. Neuroreport 11: 1361–1364.

    Article  CAS  PubMed  Google Scholar 

  • Qin M, Kang J, Smith CB (2002) Increased rates of cerebral glucose metabolism in a mouse model of fragile X mental retardation. Proc Natl Acad Sci USA 99: 15758–15763.

    Article  CAS  PubMed  Google Scholar 

  • Schulz B, Fendt M, Richardson R, Schnitzler H-U (2004) Temporary inactivation of perirhinal cortex by muscimol injections block acquisition and expression of fear-potentiated startle. Eur J Neurosci 19: 713–720.

    Article  PubMed  Google Scholar 

  • Scriver CR, Kaufman S, Woo SLC (1989) The hyperphenylalaninemias. In: Scriver CR, Beaudet AL, Sly WS, Valle D, eds. The Metabolic Basis of Inherited Disease. New York: McGraw-Hill, 495–546.

    Google Scholar 

  • Shapiro MB, Grady CL, Kumar A, et al (1990) Regional cerebral glucose metabolism is normal in young adults with Down syndrome. J Cerebr Blood Flow Metab 10: 199–206.

    Google Scholar 

  • Shedlovsky A, McDonald JD, Symula D, Dove WF (1993) Mouse models of human phenylketonuria. Genetics 134: 1205–1210.

    CAS  PubMed  Google Scholar 

  • Smith CB, Kang J (2000) Cerebral protein synthesis in a genetic mouse model of phenylketonuria. Proc Natl Acad Sci USA 97: 11014–11019.

    Article  CAS  PubMed  Google Scholar 

  • Sokoloff L (1989) Measurement of regional hemodynamic and metabolic changes in the central nervous system with imaging techniques. In: Battaini, F, ed. Regulatory Mechanisms of Neuron to Vessel Communication in the Brain. Berlin: Springer-Verlag, 345–392.

    Google Scholar 

  • Sokoloff L (1996) Circulation in the central nervous system. In: Greger R, Windhorst U, eds. Comprehensive Human Physiology, vol. 1. Berlin: Springer-Verlag, 579–602.

    Google Scholar 

  • Sokoloff L, Reivich M, Kennedy C, et al (1977) The [14C]deoxy-glucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized rat. J Neurochem 28: 897–916.

    Article  CAS  PubMed  Google Scholar 

  • Turkheimer FE, Smith CB, Schmidt K (2001) Estimation of the number of ‘true’ null hypotheses in multivariate analysis of neuroimaging data. NeuroImage 13: 920–930.

    Article  CAS  PubMed  Google Scholar 

  • Walton ME, Bannerman DM, Alterescu K, Rushworth MFS (2003) Functional specialization within medial frontal cortex of the anterior cingulated for evaluating effort-related decisions. J Neurosci 23: 6475–6479.

    CAS  PubMed  Google Scholar 

  • Wree A, Beck T, Bielenberg GW, Schleicher A, Zilles K (1989) Local cerebral glucose utilization in the autoimmune New Zealand Black (NZB) mouse. Histochemistry 92: 343–348.

    Article  CAS  PubMed  Google Scholar 

  • Zagreda L, Goodman J, Druin DP, McDonald D, Diamond A (1999) Cognitive deficits in a genetic mouse model of the most common biochemical cause of human mental retardation. J Neurosci 19: 6175–6182.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Beebe Smith.

Additional information

Communicating editor: Michael Gibson

Competing interests: None declared

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qin, M., Beebe Smith, C. Regionally selective decreases in cerebral glucose metabolism in a mouse model of phenylketonuria. J Inherit Metab Dis 30, 318–325 (2007). https://doi.org/10.1007/s10545-007-0583-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-007-0583-1

Keywords

Navigation