Skip to main content

Advertisement

Log in

Immunomagnetic separation in a novel cavity-added serpentine microchannel structure for the selective isolation of lung adenocarcinoma cells

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

The manipulation and separation of circulating tumor cells (CTCs) in continuous fluidic flows play an essential role in various biomedical applications, particularly the early diagnosis and treatment of diseases. Recent advances in magnetic bead development have provided promising solutions to the challenges encountered in CTC manipulation and isolation. In this study, we proposed a biomicrofluidic platform for specifically isolating human lung carcinoma A549 cells in microfluidic channels. The principle of separation was based on the effect of the magnetic field on aptamer-conjugated magnetic beads, also known as immunomagnetic beads, in a serpentine microchannel with added cavities (SMAC). The magnetic cell separation performance of the proposed structure was modeled and simulated by using COMSOL Multiphysics. The experimental procedures for aptamer molecular conjugation on 1.36 µm-diameter magnetic beads and magnetic bead immobilization on A549 cells were also reported. The lung carcinoma cell–bead complexes were then experimentally separated by an external magnetic field. Separation performance was also confirmed by optical microscopic observations and fluorescence analysis, which showed the high selectivity and efficiency of the proposed system in the isolation and capture of A549 cells in our proposed SMAC. At the flow rate of 5 µL/s, the capture rate of human lung carcinoma cells exceeded 70% in less than 15 min, whereas that of the nontarget cells was approximately 4%. The proposed platform demonstrated its potential for high selectivity, portability, and facile operation, which are suitable considerations for developing point-of-care applications for various biological and clinical purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • A.A.S. Bhagat, H. Bow, H.W. Hou, S.J. Tan, J. Han, C.T. Lim. Microfluidics for cell separation. Med. Biol. Eng. Comput. 48(10), 999–1014 (2010)

  • A.D. Ellington, J.W. Szostak, Selection in vitro of single-stranded DNA molecules that fold into specific ligand-binding structures. Nat. 355(6363), 850–852 (1992)

  • A. Munaz, M.J.A. Shiddiky, N.T. Nguyen, Magnetophoretic separation of diamagnetic particles through parallel ferrofluid streams. Sensors Actuators B Chem. 275 459–469 (2018)

  • A. Shiriny, M. Bayareh, On magnetophoretic separation of blood cells using Halbach array of magnets. Mecc. 55(10), 1903–1916 (2020)

  • A.Y. Fu, C. Spence, A. Scherer, F.H. Arnold, S.R. Quake, A microfabricated fluorescence-activated cell sorter. Nat. Biotechnol. 17(11), 1109–1111 (1999)

  • A. Volpe, U. Krishnan, M. S. Chiriacò, E. Primiceri, A. Ancona, F. Ferrara, A smart procedure for the femtosecond laser-based fabrication of a polymeric lab-on-a-chip for capturing tumor cell. Engineering (2020)

  • B. Hong Y. Zu, Detecting circulating tumor cells: Current challenges and new trends. Theranostics 3(6), 377–394 (2013)

  • B. Kwak et al., Hydrodynamic blood cell separation using fishbone shaped microchannel for circulating tumor cells enrichment. Sensors Actuators B Chem. 261, 38–43 (2018)

  • C. Chandola, S. Kalme, M.G. Casteleijn, A. Urtti, M. Neerathilingam, Application of aptamers in diagnostics, drug-delivery and imaging. J. Biosci. 41(3), 535–561 (2016)

  • C.P. Jen, H.H. Chang, C.T. Huang, K.H. Chen, A microfabricated module for isolating cervical carcinoma cells from peripheral blood utilizing dielectrophoresis in stepping electric fields. Microsyst. Technol. 18(11), 1887–1896 (2012)

  • C.P. Jen, H.H. Chang, A handheld preconcentrator for the rapid collection of cancerous cells using dielectrophoresis generated by circular microelectrodes in stepping electric fields. Biomicrofluidics 5(3), 034101 (2011)

  • D. Yuan et al., Dean-flow-coupled elasto-inertial particle and cell focusing in symmetric serpentine microchannels. Microfluid. Nanofluidics 23(3), 1–9 (2019)

  • D.Q. Loc et al., Circular electrodes stepping manipulation platform for A549 cancer cell detection. Int. J. Nanotechnol. 15(11–12), 983–997 (2018)

  • E. Torres-Chavolla, E.C. Alocilja, Aptasensors for detection of microbial and viral pathogens. Biosens. Bioelectron. 24(11), 3175–3182 (2009)

  • F. Li, G. Yang, Z.P. Aguilar, Y. Xiong, H. Xu, Affordable and simple method for separating and detecting ovarian cancer circulating tumor cells using BSA coated magnetic nanoprobes modified with folic acid. Sensors Actuators B Chem. 262 611–618 (2018)

  • G. Liu, C. Cao, S. Ni, S. Feng, H. Wei, On-chip structure-switching aptamer-modified magnetic nanobeads for the continuous monitoring of interferon-gamma ex vivo. Microsystems Nanoeng. 5(1), 1–11 (2019)

  • G.S. Zamay et al., Aptamers selected to postoperative lung adenocarcinoma detect circulating tumor cells in human blood. Mol. Ther. 23(9), 1486–1496 (2015)

  • G. Vona et al., Isolation by size of epithelial tumor cells : a new method for the immunomorphological and molecular characterization of circulating tumor cells. Am. J. Pathol. 156(1), 57 (2000)

  • H. Mikhail, I. Mekkawy, Magnetic susceptibility of lead sulphide. Czechoslov. J. Phys. - CZECH. J. PHYS. 28, 216–219 (1978)

  • H. Modh, T. Scheper, J.G. Walter, Aptamer-Modified Magnetic Beads in Biosensing. Sensors 18(4), 1041 (2018)

  • H. Pei, L. Li, Z. Han, Y. Wang, B. Tang, Recent advances in microfluidic technologies for circulating tumor cells: enrichment, single-cell analysis, and liquid biopsy for clinical applications. Lab Chip 20(21), 3854–3875 (2020)

  • H. Vu-Dinh, H. Feng, C.P. Jen, Effective isolation for lung carcinoma cells based on immunomagnetic separation in a microfluidic channel. Biosens. 11(1), 23 (2021)

  • J.A. Barta, C.A. Powell, J.P. Wisnivesky, Global epidemiology of lung cancer. Ann. Glob. Heal. 85(1), 8 (2019)

  • J.H. Jung, G.Y. Kim, T.S. Seo, An integrated passive micromixer–magnetic separation–capillary electrophoresis microdevice for rapid and multiplex pathogen detection at the single-cell level. Lab Chip 11(20), 3465–3470 (2011)

  • J.W. Choi, C.H. Ahn, S. Bhansali, H.T. Henderson, A new magnetic bead-based, filterless bio-separator with planar electromagnet surfaces for integrated bio-detection systems. Sensors Actuators B Chem. 68(1–3), pp. 34–39 (2000)

  • K.A. Hyun, T.Y. Lee, S.H. Lee, H.I lJung, Two-stage microfluidic chip for selective isolation of circulating tumor cells (CTCs). Biosens. Bioelectron. 67, 86–92 (2015)

  • K. Jacob, C. Sollier, N. Jabado, Circulating tumor cells: detection, molecular profiling and future prospects. Expert Rev. Proteomics 4(6), 741-56 (2007)

  • K. Chen, J. Amontree, J. Varillas, J. Zhang, T.J. George, Z.H. Fan, Incorporation of lateral microfiltration with immunoaffinity for enhancing the capture efficiency of rare cells. Sci. Reports 10(1), 1–12 (2020)

  • K.M. Song, S. Lee, C. Ban, Aptamers and their biological applications. Sensors 12(1), 612–631 (2012)

  • L.D. Quang et al., Biological living cell in-flow detection based on microfluidic chip and compact signal processing circuit. IEEE Trans. Biomed. Circuits Syst. 14(6), 1371–1380 (2020)

  • L.Q. Do et al., Dielectrophoresis microfluidic enrichment platform with built-in capacitive sensor for rare tumor cell detection. BioChip J. 12(2), 114–122 (2018)

  • M. Ebrahimi, M. Johari-Ahar, H. Hamzeiy, J. Barar, O. Mashinchian, Y. Omidi, Electrochemical impedance spectroscopic sensing of methamphetamine by a specific aptamer. Bioimpacts 2(2), 91–95 (2012)

  • M. Labib et al., Aptamer and antisense-mediated two-dimensional isolation of specific cancer cell subpopulations. J. Am. Chem. Soc. 138(8), 2476–2479 (2016)

  • M. Sommerfeld, Numerical methods for dispersed multiphase flows BT - particles in flows. T. Bodnár, G.P. Galdi, Š. Nečasová, Eds. Cham: Springer International Publishing, pp. 327–396 (2017)

  • M. Tang et al., A chip assisted immunomagnetic separation system for the efficient capture and in situ identification of circulating tumor cells. Lab Chip 16(7), 1214–1223 (2016)

  • N.V. Nguyen, C.H. Yang, C.J. Liu, C.H. Kuo, D.C. Wu, C.P. Jen, An aptamer-based capacitive sensing platform for specific detection of lung carcinoma cells in the microfluidic chip. Biosens. 8(4), 98 (2018)

  • N.V. Nguyen, C.P. Jen, Selective detection of human lung adenocarcinoma cells based on the aptamer-conjugated self-assembled monolayer of gold nanoparticles. Micromachines 10(3), 195 (2019)

  • P. Rodriguez-Mateos, B. Ngamsom, C.E. Dyer, A. Iles, N. Pamme, Inertial focusing of microparticles, bacteria, and blood in serpentine glass channels. Electrophoresis (2021)

  • R.D. Jiang, H. Shen, YJ Piao, The morphometrical analysis on the ultrastructure of A549 cells. Rom. J. Morphol. Embryol. 51(4), 663–667 (2010)

  • S. Oh et al., Magnetic activated cell sorting (MACS) pipette tip for immunomagnetic bacteria separation. Sensors Actuators B Chem. 272 324–330 (2018)

  • S. Van Den Driesche, V. Rao, D. Puchberger-Enengl, W. Witarski, M.J. Vellekoop, Continuous cell from cell separation by traveling wave dielectrophoresis. Sensors Actuators B Chem. 170 207–214 (2012)

  • S. Balamurugan, A. Obubuafo, S. A. Soper, D.A. Spivak, Surface immobilization methods for aptamer diagnostic applications. Anal. Bioanal. Chem. 390(4), 1009–1021 (2007)

  • S. Bamrungsap et al., Pattern recognition of cancer cells using aptamer-conjugated magnetic nanoparticles. ACS Nano 6(5), 3974–3981 (2012)

  • S.L. Clark, V.T. Remcho, Aptamers as analytical reagents. Electrophoresis 23(9), 1335–1340 (2002)

  • T. Arakawa, M. Noguchi, K. Sumitomo, Y. Yamaguchi, S. Shoji, High-throughput single-cell manipulation system for a large number of target cells. Biomicrofluidics 5(1) (2011)

  • T. Lunnoo, T. Puangmali, Capture Efficiency of Biocompatible Magnetic Nanoparticles in Arterial Flow: A Computer Simulation for Magnetic Drug Targeting. Nanoscale Res. Lett. 10(1), 1–11 (2015)

  • T. Vu Quoc, V. Nguyen Ngoc, B.A. Hoang, C.P. Jen, TC. Duc, T.T. Bui, Development of a compact electrical impedance measurement circuit for protein detection two-electrode impedance micro-sensor. IETE J. Res. 1–9 (2021)

  • X. Chen, D.F. Cui, C.C. Liu, H. Li, Microfluidic chip for blood cell separation and collection based on crossflow filtration. Sensors Actuators B Chem. 130(1), 216–221 (2008)

  • X. Lin, A. O’Reilly Beringhs, X. Lu, Applications of nanoparticle-antibody conjugates in immunoassays and tumor imaging. AAPS J. 23(2) 1–16 (2021)

  • X. Lou et al., Micromagnetic selection of aptamers in microfluidic channels. Proc. Natl. Acad. Sci. 106(9), 2989–2994 (2009)

  • X. Wu, H. Wu, Y. Hu, Enhancement of separation efficiency on continuous magnetophoresis by utilizing L/T-shaped microchannels. Microfluid. Nanofluidics 11(1), 11–24 (2011)

  • Y. Chen et al., Rare cell isolation and analysis in microfluidics. Lab Chip 14(4), 626–645 (2014)

  • Y. Shen, Y. Yalikun, Y. Tanaka, Recent advances in microfluidic cell sorting systems. Sensors Actuators B Chem. 282 268–281 (2019)

  • Y. Yamaguchi et al., 3-D simulation and visualization of laminar flow in a microchannel with hair-pin curves. AIChE J. 50(7), 1530–1535 (2004)

  • Z. Zhao, L. Xu, X. Shi, W. Tan, X. Fang, D. Shangguan, Recognition of subtype non-small cell lung cancer by DNA aptamers selected from living cells. Analyst 134(9), 1808–1814 (2009)

Download references

Acknowledgements

This work was funded by the Vietnam Ministry of Science and Technology under Grant NĐT.101.TW/21 as well as the Ministry of Science and Technology of the Republic of China (Taiwan), under grant numbers MOST 109-2221-E-194-011-MY2 and MOST 109-2923-E-194-002-MY3

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Ping Jen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vu-Dinh, H., Do Quang, L., Chang, C.C. et al. Immunomagnetic separation in a novel cavity-added serpentine microchannel structure for the selective isolation of lung adenocarcinoma cells. Biomed Microdevices 23, 51 (2021). https://doi.org/10.1007/s10544-021-00589-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10544-021-00589-6

Keywords

Navigation