Skip to main content
Log in

Development of a powered variable-stiffness exoskeleton device for elbow rehabilitation

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Robot-assisted movement training by means of exoskeleton devices has been proven to be an effective method for post-stroke patients to recover their motor function. However, in order to be used in home-based rehabilitation, the kinematic structure of a wearable exoskeleton device should provide portability and make allowances for the natural joint range of motion for the user. Additionally, the actuated stiffness of the target joint is desired to be adjustable in accordance with the specific impairment level of the patient’s upper limb. In this paper, we present a novel portable exoskeleton device which could provide support for rehabilitation patients with variable actuated stiffness in the elbow joint. It has five passive degrees of freedom to guarantee the user’s natural joint range of motion and intra-subject variability, as well as an integrated variable stiffness actuator (VSA) which can adjust the joint stiffness independently by moving the pivot position. An elbow power-assist trial with different actuated joint stiffnesses was tested on a healthy subject to evaluate the functionality of the proposed device. By regulating the joint stiffness, the proposed device could provide variable power assistance for the wearer’s elbow movements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • M. Abe, N. Yamada, Modulation of elbow joint stiffness in a vertical plane during cyclic movement at lower or higher frequencies than natural frequency. Exp. Brain Res. 153(3), 394–399 (2003)

    Article  Google Scholar 

  • V. Agrawal, W. Peine, B. Yao, S. Choi, Control of cable actuated devices using smooth backlash inverse. IEEE International Conference on Robotics and Automation (ICRA). 1074–1079 (2010)

  • M. Babaiasl, S. Mahdioun, P. Jaryani, M. Yazdani, A review of technological and clinical aspects of robot-aided rehabilitation of upper-extremity after stroke. Disabil. Rehabil. Assist. Technol. 11(4), 263–280 (2016)

    Google Scholar 

  • S. Barreca, S. Wolf, S. Fasoli, R. Bohannon, Treatment interventions for the paretic upper limb of stroke survivors: A critical review. Neurorehabil. Neural Repair 17(4), 220–226 (2003)

    Article  Google Scholar 

  • S. Groothuis, G. Rusticelli, A. Zucchelli, S. Stramigioli, R. Carloni, The variable stiffness actuator vsaut-ii: Mechanical design, modeling, and identification. IEEE/ASME Trans. Mechatron. 19(2), 589–597 (2014)

    Article  Google Scholar 

  • S. Hesse, G. Schulte-Tigges, M. Konrad, A. Bardeleben, C. Werner, Robot-assisted arm trainer for the passive and active practice of bilateral forearm and wrist movements in hemiparetic subjects. Arch. Phys. Med. Rehabil. 84(6), 915–920 (2003)

    Article  Google Scholar 

  • G. Kwakkel, B. Kollen, H. Krebs, Effects of robot-assisted therapy on upper limb recovery after stroke: A systematic review. Neurorehabil. Neural Repair 22(2), 111–121 (2008)

    Article  Google Scholar 

  • X. Li, Y. Pan, G. Chen, H. Yu, Adaptive human–robot interaction control for robots driven by series elastic actuators. IEEE Trans. Robot. 33(1), 169–182 (2017)

    Article  Google Scholar 

  • A. Lo, P. Guarino, L. Richards, J. Haselkorn, G. Wittenberg, D. Federman, B. Volpe, Robot-assisted therapy for long-term upper-limb impairment after stroke. N. Engl. J. Med. 362(19), 1772–1783 (2010)

    Article  Google Scholar 

  • P. Lum, C. Burgar, P. Shor, M. Majmundar, M. Van der Loos, Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Arch. Phys. Med. Rehabil. 83(7), 952–959 (2002)

    Article  Google Scholar 

  • P. Maciejasz, J. Eschweiler, K. Gerlach-Hahn, A. Jansen-Troy, S. Leonhardt, A survey on robotic devices for upper limb rehabilitation. J. Neuroeng. Rehabil. 11(1), 3 (2014)

    Article  Google Scholar 

  • D. Mozaffarian, E. Benjamin, A. Go, D. Arnett, M. Blaha, M. Cushman, H. Fullerton, Executive summary: Heart Disease and Stroke Statistics-2016 update: A report from the American Heart Association. Circulation 133(4), 447 (2016)

    Article  Google Scholar 

  • T. Nef, M. Guidali, R. Riener, ARMin III–arm therapy exoskeleton with an ergonomic shoulder actuation. Appl. Bionics Biomech. 6(2), 127–142 (2009)

    Article  Google Scholar 

  • N. Norouzi-Gheidari, P. Archambault, J. Fung, Effects of robot-assisted therapy on stroke rehabilitation in upper limbs: systematic review and meta-analysis of the literature. J. Rehabil. Res. Dev. 49(4), 479 (2012)

    Article  Google Scholar 

  • J. Patton, M. Stoykov, M. Kovic, F. Mussa-Ivaldi, Evaluation of robotic training forces that either enhance or reduce error in chronic hemiparetic stroke survivors. Exp. Brain Res. 168(3), 368–383 (2006)

    Article  Google Scholar 

  • J. Perry, J. Rosen, S. Burns, Upper-limb powered exoskeleton design. IEEE/ASME Trans. Mechatron. 12(4), 408–417 (2007)

    Article  Google Scholar 

  • B. Siciliano, O. Khatib, Springer handbook of robotics: Springer (2016)

  • Z. Song, S. Guo, Design process of exoskeleton rehabilitation device and implementation of bilateral upper limb motor movement. J. Med. Biol. Eng. 32(5), 323–330 (2012)

    Article  Google Scholar 

  • Z. Song, S. Guo, M. Pang, S. Zhang, N. Xiao, B. Gao, L. Shi, Implementation of resistance training using an upper-limb exoskeleton rehabilitation device for elbow joint. J. Med. Biol. Eng. 34(2), 188–196 (2014)

    Article  Google Scholar 

  • A. Stienen, E. Hekman, F. Van Der Helm, H. Van Der Kooij, Self-aligning exoskeleton axes through decoupling of joint rotations and translations. IEEE Trans. Robot. 25(3), 628–633 (2009)

    Article  Google Scholar 

  • R. Van Ham, T. Sugar, B. Vanderborght, K. Hollander, D. Lefeber, Compliant actuator designs. IEEE Robot. Autom. Mag. 16(3) (2009)

    Article  Google Scholar 

  • G. Vanpee, G. Hermans, J. Segers, R. Gosselink, Assessment of limb muscle strength in critically ill patients: A systematic review. Crit. Care Med. 42(3), 701–711 (2014)

    Article  Google Scholar 

  • L. Visser, R. Carloni, S. Stramigioli, Energy-efficient variable stiffness actuators. IEEE Trans. Robot. 27(5), 865–875 (2011)

    Article  Google Scholar 

  • N. Vitiello, T. Lenzi, S. Roccella, S. De Rossi, E. Cattin, F. Giovacchini, M. Carrozza, NEUROExos: A powered elbow exoskeleton for physical rehabilitation. IEEE Trans. Robot. 29(1), 220–235 (2013)

    Article  Google Scholar 

  • S. Wolf, G. Grioli, O. Eiberger, W. Friedl, M. Grebenstein, H. Höppner, M. Catalano, Variable stiffness actuators: Review on design and components. IEEE/ASME Trans. Mechatron. 21(5), 2418–2430 (2016)

    Article  Google Scholar 

  • H. Yu, S. Huang, G. Chen, N. Thakor, Control design of a novel compliant actuator for rehabilitation robots. Mechatronics 23(8), 1072–1083 (2013)

    Article  Google Scholar 

  • H. Yu, S. Huang, G. Chen, Y. Pan, Z. Guo, Human–robot interaction control of rehabilitation robots with series elastic actuators. IEEE Trans. Robot. 31(5), 1089–1100 (2015)

    Article  Google Scholar 

  • S. Zhang, S. Guo, M. Pang, B. Gao, P. Guo, Mechanical design and control method for sea and VSA-based exoskeleton devices for elbow joint rehabilitation. Neuro Biomed Eng 2(3), 142–147 (2014)

    Article  Google Scholar 

  • S. Zhang, S. Guo, Y. Fu, L. Boulardot, Q. Huang, H. Hirata, H. Ishihara, Integrating compliant actuator and torque limiter mechanism for safe home-based upper-limb rehabilitation device design. J. Med. Biol. Eng. 37(3), 357–364 (2017)

    Article  Google Scholar 

Download references

Acknowledgments

This research is partly supported by National High Tech. Research and Development Program of China (No.2015AA043202), and SPS KAKENHI Grant Number 15 K2120.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi Liu or Shuxiang Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Guo, S., Hirata, H. et al. Development of a powered variable-stiffness exoskeleton device for elbow rehabilitation. Biomed Microdevices 20, 64 (2018). https://doi.org/10.1007/s10544-018-0312-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-018-0312-6

Keywords

Navigation