Skip to main content

Advertisement

Log in

Cytocoded passwords: BioMEMS based barcoding of biological samples for user authentication in microfluidic diagnostic devices

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Smart and connected point-of-care (POC) medical devices are becoming ever more ubiquitous and have the potential to radically improve disease diagnosis and health monitoring. This emerging connectivity can potentially create serious security issues where patient privacy can be easily compromised. Protection of patient data from malicious cyber-physical attackers requires radical solutions at the BioMEMS level. Ideally, the information exchange between the patient and practitioner is an automated and transparent process for the patient. In practice, this exchange requires both the patient and the test results to be authenticated and validated respectively on the storage service to ensure that the medical diagnostic results are properly stored and their access is protected. This secure authentication phase is particularly critical for medical diagnostics: patient data exposure could lead to negative social effects. This work focuses on providing a transparent authentication mechanism for patient blood tests performed using impedance flow cytometry. The goal is twofold: first, to alleviate the user from security procedures, precisely an authentication step, while using the medical device; second, to provide a unique identifier for the test results when stored in a remote server. This paper describes a domain specific authentication method for impedance flow cytometry devices. We spike into the blood samples synthetic micro-beads of different sizes, at determined concentrations, to generate a unique authentication string that uniquely identify a test result on the remote storage service. These authentication strings are embedded in the test devices and can be used as a convenient alternative to generic authentication methods, such as logins and passwords. This alternative method removes the authentication burden from the user and protects patient’s privacy further by preventing them from linking their personal information to their test results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

References

  • A. Adams, M.A. Sasse, Users are not the enemy. Communications of the ACM 42(12), 40–46 (1999)

    Article  Google Scholar 

  • P. Balakrishnan, M. Dunne, N. Kumarasamy, S. Crowe, G. Subbulakshmi, A.K. Ganesh, A.J. Cecelia, P. Roth, K.H. Mayer, S.P. Thyagarajan, S. Solomon, An inexpensive, simple, and manual method of CD4 T-cell quantitation in HIV-infected individuals for use in developing countries. JAIDS J Acquir Immune Defic Syndr 36(5), 1006–1010 (2004)

    Article  Google Scholar 

  • J. Bonneau, C. Herley, P.C. Van Oorschot, F. Stajano, The quest to replace passwords: A framework for comparative evaluation of web authentication schemes. Technical report, University of Cambridge, Computer Laboratory, 2012

  • X. Cheng, D. Irimia, M. Dixon, K. Sekine, U. Demirci, L. Zamir, R.G. Tompkins, W. Rodriguez, M. Toner, A microfluidic device for practical label-free CD4+ T-cell counting of HIV-infected subjects. Lab on a Chip 7(2), 170–178 (2007a)

    Article  Google Scholar 

  • X. Cheng, D. Irimia, J.C. Meredith Dixon, U.D. Ziperstein, R.G. Lee Zamir, M.T. Tompkins, R. William, Rodriguez. A microchip approach for practical label-free CD4+ T-cell counting of HIV-infected subjects in resource-poor settings. JAIDS J Acquir Immune Defic Syndr 45(3), 257–261 (2007b)

    Google Scholar 

  • K. Cheung, S. Gawad, P. Renaud, Impedance spectroscopy flow cytometry: On-chip label-free cell differentiation. Cytometry Part A 65((2), 124–132 (2005)

    Article  Google Scholar 

  • Dawit Wolday, B Hailu, Mulu Girma, E Hailu, E Sanders, and A Fontanet. Low CD4+ T-cell count and high HIV viral load precede the development of tuberculosis disease in a cohort of HIV-positive Ethiopians. Int J Tuberc Lung Dis 7(2), 110–116 (2003)

  • K. Dheda, A. Lalvani, R.F. Miller, G. Scott, H. Booth, M.A. Johnson, A. Zumla, G.A.W. Rook, Performance of a T-cell-based diagnostic test for tuberculosis infection in HIV-infected individuals is independent of CD4 cell count. Aids 19(17), 2038–2041 (2005)

    Article  Google Scholar 

  • F. Ellis McKenzie, W.A. Prudhomme, A.J. Magill, J. Russ Forney, B. Permpanich, C. Lucas, R.A. Gasser, C. Wongsrichanalai, White blood cell counts and malaria. J Infect Dis 192(2), 323–330 (2005)

    Article  Google Scholar 

  • Dinei Florencio and Cormac Herley. A large-scale study of web password habits. Proceedings of the 16th international conference on World Wide Web, pages 657–666. ACM, 2007.

  • J.F. Fries, C. Everett Koop, C.E. Beadle, P.P. Cooper, M.J. England, R.F. Greaves, J.J. Sokolov, D. Wright, Reducing health care costs by reducing the need and demand for medical services. N Engl J Med 329(5), 321–325 (1993)

    Article  Google Scholar 

  • F.T. Grampp, R.H. Morris, The unix system: Unix operating system security. AT&T Bell Labs Tech J 63(8), 1649–1672 (1984)

    Article  Google Scholar 

  • B. Greve, R. Kelsch, K. Spaniol, H.T. Eich, M. Götte, Flow cytometry in cancer stem cell analysis and separation. Cytometry Part A 81((4), 284–293 (2012)

    Article  Google Scholar 

  • A. Jain, L. Hong, S. Pankanti, Biometric identification. Commun ACM 43(2), 90–98 (2000)

    Article  Google Scholar 

  • B.E. Jones, S.M.M. Young, D. Antoniskis, P.T. Davidson, F. Kramer, P.F. Barnes, Relationship of the manifestations of tuberculosis to CD4 cell counts in patients with human immunodeficiency virus infection. Am J Respir Crit Care Med 148(5), 1292–1297 (1993)

    Google Scholar 

  • B.E. Jones, M.M. Oo, E.K. Taikwel, D. Qian, A. Kumar, E.R. Maslow, P.F. Barnes, CD4 cell counts in human immunodeficiency virusnegative patients with tuberculosis. Clin Infect Dis 24(5), 988–991 (1997)

    Article  Google Scholar 

  • T. Le, G. Salles-Loustau, L. Najafizadeh, M. Javanmard, S. Zonouz, Secure point-of-care medical diagnostics via trusted sensing and cyto-coded passwords. In 46th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), Toulouse, France, 2016, pp. 583–594

  • S. Lee, V. Oncescu, M. Mancuso, S. Mehta, D. Erickson, A smartphone platform for the quantification of vitamin D levels. Lab on a Chip 14(8), 1437–1442 (2014)

    Article  Google Scholar 

  • Xiyuan Liu, Tung-Yi Lin, and Peter B Lillehoj. Smartphones for cell and biomolecular detection. Ann Biomed Eng, 42(11):2205–2217, 2014.

    Article  Google Scholar 

  • C. Logan, M. Givens, J.T. Ives, M. Delaney, M.J. Lochhead, Robert T Schooley, and Constance A Benson. Performance evaluation of the MBio Diagnostics point-of-care CD4 counter. J Immunol Methods 387(1), 107–113 (2013)

    Article  Google Scholar 

  • M. Mancuso, E. Cesarman, D. Erickson, Detection of Kaposi’s sarcoma associated herpesvirus nucleic acids using a smart-phone accessory. Lab on a Chip 14(19), 3809–3816 (2014)

    Article  Google Scholar 

  • D.J. Martin, J.G.M. Sim, G.J. Sole, L. Rymer, S. Shalekoff, A.B.N. Van Niekerk, P. Becker, C.N. Weilbach, J. Iwanik, K. Keddy, G.B. Miller, B. Ozbay, A. Ryan, T. Viscovic, M. Woolf, CD4+ lymphocyte count in African patients co-infected with HIV and tuberculosis. JAIDS J Acquir Immune Defic Syndr 8(4), 386–391 (1995)

    Google Scholar 

  • R. Morris, K. Thompson, Password security: A case history. Commun ACM 22(11), 594–597 (1979)

    Article  Google Scholar 

  • F.C. Olivier Lazcka, F. Xavier Munoz, Pathogen detection: A perspective of traditional methods and biosensors. Biosensors and Bioelectronics 22(7), 1205–1217 (2007)

    Article  Google Scholar 

  • W. Tang, D. Tang, Z. Ni, N. Xiang, H. Yi, Microfluidic impedance cytometer with inertial focusing and liquid electrodes for high-throughput cell counting and discrimination. Anal Chem 89(5), 3154–3161 (2017)

    Article  Google Scholar 

  • V. Velusamy, K. Arshak, O. Korostynska, K. Oliwa, C. Adley, An overview of foodborne pathogen detection: in the perspective of biosensors. Biotechnol Adv 28(2), 232–254 (2010)

    Article  Google Scholar 

  • R.S. Wallis, M. Pai, D. Menzies, T. Mark Doherty, G. Walzl, M.D. Perkins, A. Zumla, Biomarkers and diagnostics for tuberculosis: progress, needs, and translation into practice. The Lancet 375(9729), 1920–1937 (2010)

    Article  Google Scholar 

  • Y. Xia, G.M. Whitesides, Soft lithography. Annu Rev Mater Sci 28(1), 153–184 (1998)

    Article  Google Scholar 

Download references

Acknowledgements

The devices were fabricated in the Microelectronic Research Laboratory (MERL) in the School of Engineering at Rutgers University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Javanmard.

Electronic supplementary material

ESM 1

(DOCX 271 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salles-Loustau, G., Le, T., Najafizadeh, L. et al. Cytocoded passwords: BioMEMS based barcoding of biological samples for user authentication in microfluidic diagnostic devices . Biomed Microdevices 20, 63 (2018). https://doi.org/10.1007/s10544-018-0306-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-018-0306-4

Keywords

Navigation