Skip to main content
Log in

Combination of antibody-coated, physical-based microfluidic chip with wave-shaped arrays for isolating circulating tumor cells

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Circulating tumor cells (CTCs) are found in the peripheral blood of patients with metastatic cancers, which have critical significance in cancer prognosis and diagnostics. Enumeration is significantly valuable since number of CTCs is strongly correlated to severity of disease. This article is proposed and demonstrated an antibody-coated, size-based microfluidic chip with wave-shaped arrays could efficiently capture CTCs combining two separation methods of both size- and deformability-based and affinity-based segregation. Utilizing immunocapture of capture chemistry of Epithelial Cell Adhension Molecule (EpCAM), tumor cells could be captured by narrow gaps or have a friction with microposts edges to realize both immune-affinity and size capture. This wave-shaped layout of microfluidic chip with varying gaps between adjacent circular microposts can generate perpendicular velocities to the fluidic direction. This oriented fluidic direction will carry cells to next smaller neighboring gap and then be captured gradually. The experiment results indicate capture efficiency is ~90% and viability is ~95% after extracted and cultured 3 days. Furthermore, this chip has been validated for whole blood with cancer cell lines and mimic patient blood. This study demonstrates feasibility using our microfluidic chip for CTCs research, monitoring cancer progress and evaluating therapeutic treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • A.A. Adams, P.I. Okagbare, J. Feng, M.L. Hupert, D. Patterson, J. Gottert, R.L. McCarley, D. Nikitopoulos, M.C. Murphy, S.A. Soper, Highly efficient circulating tumor cell isolation from whole blood and label-free enumeration using polymer-based microfluidics with an integrated conductivity sensor. J. Am. Chem. Soc. 130, 8633–8641 (2008)

    Article  Google Scholar 

  • S.A. Bustin, S. Siddiqi, S. Ahmed, S. Dorudi, Quantification of cytokeratin 20, carcinoembryonic antigen and guanylyl cyclase C mRNA levels in lymph nodes may not predict treatment failure in colorectal cancer patients. Int. J. Cancer 108, 412–417 (2004)

    Article  Google Scholar 

  • J. Chelly, J.P. Concordet, J.C. Kaplan, A. Kahn, Illegitimate transcription: Transcription of any gene in any cell type. Proc. Natl. Acad. Sci. U. S. A. 86, 2617–2621 (1989)

    Article  Google Scholar 

  • J. Chung, D. Issadore, A. Ullal, K. Lee, R. Weissleder, H. Lee, Rare cell isolation and profiling on a hybrid magnetic/size-sorting chip. Biomicrofluidics 7, 054107 (2013)

    Article  Google Scholar 

  • E. Crowley, N.F. Di, F. Loupakis, A. Bardelli, Liquid biopsy: Monitoring cancer-genetics in the blood. Nat. Rev. Clin. Oncol. 10, 472–484 (2013)

    Article  Google Scholar 

  • I. Desitter, B.S. Guerrouahen, N. Benali-Furet, J. Wechsler, P.A. Janne, Y. Kuang, M. Tanagita, L. Wang, J.A. Berkowitz, R.J. Distel, Y.E. Cayre, A new device for rapid isolation by size and characterization of rare circulating tumor cells. Anticancer Res. 31, 427–441 (2011)

    Google Scholar 

  • Y. Dong, A.M. Skelley, K.D. Merdek, K.M. Sprott, C. Jiang, W.E. Pierceall, J. Lin, M. Stocum, W.P. Carney, D.A. Smirnov, Microfluidics and circulating tumor cells. J. Molecular Diagnostics 15, 149–157 (2013)

    Article  Google Scholar 

  • Z. Du, K.H. Cheng, M. Vaughn, N.L. Collie, L.S. Gollahon, Recognition and capture of breast cancer cells using an antibody-based platform in a microelectromechanical systems device. Biomed. Microdevices 9, 35–42 (2007)

    Article  Google Scholar 

  • J.P. Gleghorn, E.D. Pratt, D. Denning, H. Liu, N.H. Bander, S. Tagawa, D.M. Nanus, P.A. Giannakakou, B.J. Kirby, Capture of circulating tumor cells from whole blood of prostate cancer patients using geometrically enhanced differential immunocapture and a prostate-specific antibody. Lab Chip 10, 27–29 (2010)

    Article  Google Scholar 

  • J.H. He, J. Reboud, H. Ji, L. Zhang, Y. Long, C. Lee, Biomicrofluidic lab-on-chip device for cancer cell detection. Appl. Phys. Lett. 93, 223905 (2008)

    Article  Google Scholar 

  • J.H. He, J. Reboud, H.M. Ji, Development of microfluidic device and system for breast cancer cell fluorescence detection. J. Vac. Sci. & Technol. B. 27, 1295–1298 (2009)

    Article  Google Scholar 

  • N.M. Karabacak, P.S. Spuhler, F. Fachin, E.J. Lim, V. Pai, E. Ozkumur, J.M. Martel, N. Kojic, K. Smith, P. Chen, J. Yang, H. Hwang, B. Morgan, J. Trautwein, T.A. Barber, S.L. Stott, S. Maheswaran, R. Kapur, A.A. Haber, M. Toner, Microfluidic, marker-free isolation of circulating tumor cells from blood samples. Nature 9 (2014)

  • P. Katharina, C. Oumar, K. Andreas, K. Sabine, M. Nele, G. Mieczyslaw, K. Torsten, J. Cornelia, H. Ulrike, A.H. Annelore, R. Carola, P. Ulrich, R. Ingo, H. Klaus, Monitoring the response of circulating epithelial tumor cells to adjuvant chemotherapy in breast cancer allows detection of patients at risk of early relapse. J. Clin. Oncol. 26, 1208–1215 (2008)

    Article  Google Scholar 

  • T. Kumeria, M.D. Kurkuri, K.R. Diener, L. Parkinson, D. Losic, Label-free reflectometric interference microchip biosensor based on nanoporous alumina for detection of circulating tumour cells. Biosens. Bioelectron. 15, 167–173 (2012)

    Article  Google Scholar 

  • M.G. Lee, J.H. Shin, C.Y. Bae, S. Choi, J.K. Park, Label-free cancer cell separation from human whole blood using inertial microfluidics at low shear stress. Anal. Chem. 85, 6213–6218 (2013)

    Article  Google Scholar 

  • K.J. Luzzi, I.C. MacDonald, E.E. Schmidt, N. Kerkvliet, V.L. Morris, A.F. Chambers, A.C. Groom, Multistep nature of metastatic inefficiency. Am. J. Pathol. 153, 865–873 (1998)

    Article  Google Scholar 

  • P. Lv, Z. Tang, X. Liang, M. Guo, R.P.S. Han, Spatially gradated segregation and recovery of circulating tumor cells from peripheral blood of cancer patients. Biomicrofluidics 7, 034109 (2013)

    Article  Google Scholar 

  • S. Mocellin, D. Hoon, A. Ambrosi, D. Nitti, C.R. Rossi, The prognostic value of circulating tumor cells in patients with melanoma: A systematic review and meta-analysis. Clin. Cancer Res. 12, 4605–4613 (2006)

    Article  Google Scholar 

  • H. Mohamed, M. Murray, J.N. Turner, M. Caggana, Isolation of tumor cells using size and deformation. J. Chromatogr. A 1216, 8289–8295 (2009)

    Article  Google Scholar 

  • V. Murlidhar, M. Zeinali, S. Grabauskiene, M. Ghannad-Rezaie, M.S. Wicha, D.M. Simeone, N. Ramnath, R.M. Reddy, S. Nagrath, A radial flow microfluidic device for ultra-high-throughput affinity-based isolation of circulating tumor cells. Small 10, 4895–4904 (2014)

    Article  Google Scholar 

  • S. Nagrath, L.V. Sequist, S. Maheswaran, D.W. Bell, D. Irimia, L. Ulkus, M.R. Smith, E.L. Kwak, S. Digumarthy, A. Muzikansky, P. Ryan, U.J. Balis, R.G. Tompkins, D.A. Haber, M. Toner, Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450, 1235–1239 (2007)

    Article  Google Scholar 

  • K. Pantel, R.H. Brakenhoff, B. Brandt, Detection, clinical relevance and specific biological properties of disseminating tumour cells. Nat. Rev. Cancer 8, 329–340 (2008)

    Article  Google Scholar 

  • J.A. Phillips, Y. Xu, Z. Xia, Z.H. Fan, W. Tan, Enrichment of cancer cells using aptamers immobilized on a Microfluidic Channel. Anal. Chem. 81, 1033–1039 (2009)

    Article  Google Scholar 

  • K. Polyak, R.A. Weinberg, Transitions between epithelial and mesenchymal states: Acquisition of malignant and stem cell traits. Nat. Rev. Cancer 9, 265–273 (2009)

    Article  Google Scholar 

  • P. Preira, V. Grandné, J.M. Forel, S. Gabriele, M. Camara, O. Theodoly, Passive circulating cell sorting by deformability using a microfluidic gradual filter. Lab Chip 13, 161–170 (2013)

    Article  Google Scholar 

  • X. Qin, S. Park, S.P. Duffy, K. Matthews, R.R. Ang, T. Todenhöfer, H. Abdi, A. Azad, J. Bazov, K.N. Chi, P.C. Black, H. Ma, Size and deformability based separation of circulating tumor cells from castrate resistant prostate cancer patients using resettable cell traps. Lab Chip 15, 2278–2286 (2015)

    Article  Google Scholar 

  • S. Riethdorf, H. Wikman, K. Pantel, Review: Biological relevance of disseminated tumor cells in cancer patients. Int. J. Cancer 123, 1991–2006 (2008)

    Article  Google Scholar 

  • N. Shao, E. Wickstrom, B. Panchapakesan, Nanotube–antibody biosensor arrays for the detection of circulating breast cancer cells. Nanotechnology 19, 465101 (2008)

    Article  Google Scholar 

  • W. Sheng, T. Chen, R. Kamath, X. Xiong, W. Tan, Z.H. Fan, Aptamer-enabled efficient isolation of cancer cells from whole blood using a microfluidic device. Anal. Chem. 84, 4199–4206 (2012)

    Article  Google Scholar 

  • W. Sheng, T. Chen, W. Tan, Z.H. Fan, Multivalent DNA Nanospheres for enhanced capture of cancer cells in microfluidic devices. ACS Nano 7, 7067–7076 (2013)

    Article  Google Scholar 

  • M. Shyamala, V.S. Lecia, N. Sunitha, U. Lindsey, B. Brian, V.C. Chey, I. Elizabeth, D. Sven, A. JI, W.B. Daphne, D. Subba, M. Alona, I. Daniel, S. Jeffrey, G.T. Ronald, J.L. Thomas, T. Mehmet, A.H. Daniel, Detection of mutations in EGFR in circulating lung-cancer cells. N. Engl. J. Med. 359, 366–377 (2008)

    Article  Google Scholar 

  • E. Sollier, D.E. Go, J. Che, D.R. Gossett, S. O'Byrne, W.M. Weaver, N. Kummer, M. Rettig, J. Goldman, N. Nickols, S. McCloskey, R.P. Kulkarni, D.D. Carlo, Size-selective collection of circulating tumor cells using vortex technology. Lab Chip 14, 63–77 (2014)

    Article  Google Scholar 

  • S.L. Stott, C.H. Hsu, D.I. Tsukrov, M. Yu, D.T. Miyamoto, B.A. Waltman, S.M. Rothenberg, A.M. Shah, M.E. Smas, G.K. Korir, F.P. Floyd, A.J. Gilman Jr., J.B. Lord, D. Winokur, S. Springer, D. Irimia, S. Nagrath, L.V. Sequist, R.J. Lee, K.J. Isselbacher, S. Maheswaran, D.A. Haber, M. Toner, Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proc. Natl. Acad. Sci. U. S. A. 107, 18392–18397 (2010)

    Article  Google Scholar 

  • S.J. Tan, L. Yobas, G.Y.H. Lee, C.N. Ong, C.T. Lim, Microdevice for the isolation and enumeration of cancer cells from blood. Biomed. Microdevices 11, 883–892 (2009)

    Article  Google Scholar 

  • S. Wang, K. Liu, J. Liu, Y.K. Lee, Z.T.F. Yu, E.K. Lee, X. Xu, J. Reiss, L.W.K. Chung, J. Huang, M. Rettig, A. Pantuck, D. Silegson, K.N. Duraiswamy, C.K.F. Shen, H.R. Tseng, Highly efficient capture of circulating tumor cells using nanostructured silicon substrates with integrated chaotic micromixers. Angew. Chem. Int. Ed. 50, 3084–3088 (2011)

    Article  Google Scholar 

  • M.E. Warkiani, G. Guan, K.B. Luan, W.C. Lee, A.A.S. Bhagat, P.K. Chaudhuri, D.S.W. Tan, W.T. Lim, S.C. Lee, P.C.Y. Chen, C.T. Lim, J. Han, Slanted spiral microfluidics for the ultra-fast, label-free isolation of circulating tumor cells. Lab Chip 14, 128–137 (2014a)

    Article  Google Scholar 

  • M.E. Warkiani, B.L. Khoo, D.S.W. Tan, A.A.S. Bhagat, W.T. Lim, Y.S. Yap, S.C. Lee, R.A. Soo, J. Han, C.T. Lim, An ultra-high-throughput spiral microfluidic biochip for the enrichment of circulating tumor cells. Analyst 139, 3245–3255 (2014b)

    Article  Google Scholar 

  • I.Y. Wong, S. Javaid, E.A. Wong, S. Perk, D.A. Haber, M. Toner, D. Irimia, Collective and individual migration following the epithelial–mesenchymal transition. Nat. Mater. 13, 1063–1071 (2014)

    Article  Google Scholar 

  • T. Xu, B. Lu, Y.C. Tai, A. Goldkorn, A cancer detection platform which measures telomerase activity from live circulating tumor cells captured on a microfilter. Cancer Res. 70, 6420–6426 (2010)

    Article  Google Scholar 

  • M. Yu, S. Stott, M. Toner, S. Maheswaran, D.A. Haber, Circulating tumor cells: Approaches to isolation and characterization. J. Cell Biol. 192, 257–262 (2011)

    Article  Google Scholar 

  • S. Zheng, H.K. Lin, B. Lu, A. Williams, R. Datar, R.J. Cote, Y.C. Tai, 3D microfilter device for viable circulating tumor cell (CTC) enrichment from blood. Biomed. Microdevices 13, 203–213 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This research work was supported by the Major State Basic Research Development Program of China (973 Program) (Grant No. 2011CB933102), National Natural Science Foundation of China (Key Program, Grant No. 61335010), Key Research Program of Chinese Academy of Sciences (Grant No. KJZD-EW-TZ-L03-6) and Postdoctoral Research Funding (Grant No.2014 M550794). We deeply appreciate Prof. Yu-Sheng Lin from Sun Yat-Sen University helped with editing and revising the manuscript. Jingjing zhang from Xi’ an Technological University helped with simulation. Prof. Fan from Florida University, Prof. Chen from École Normale Supérieure (ENS) and Prof. Yang from Chinese Academy of Sciences offered deep discussion. Zhaoxin Geng, Graduate student Hongsheng Gao and Xiaoqing Lv from Chinese Academy of Sciences helped with design and modification, respectively. Graduate student Zhili Wang from Chinese Academy of Sciences helped to culture cells. Barbara Costello offered help for revising the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongmei Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Cao, B., Chen, H. et al. Combination of antibody-coated, physical-based microfluidic chip with wave-shaped arrays for isolating circulating tumor cells. Biomed Microdevices 19, 66 (2017). https://doi.org/10.1007/s10544-017-0202-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-017-0202-3

Keywords

Navigation